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Abstract

We investigate the impact of political ideology biases in training data. Through a set of compar-
ison studies, we examine the propagation of biases in several widely-used NLP models and its
effect on the overall retrieval accuracy. Our work highlights the susceptibility of large, complex
models to propagating the biases from human-selected input, which may lead to a deterioration
of retrieval accuracy, and the importance of controlling for these biases. Finally, as a way to
mitigate the bias, we propose to learn a text representation that is invariant to political ideology
while still judging topic relevance.

1 Introduction

Due to the extensive reaches of its network and the breadth of information enmeshed in it, social media
has become an invaluable data source for empirical studies in the social sciences. Yet, identifying all and
only relevant information out of a vast data stream remains an untamed challenge. While topic detection
methods may help researchers extract some relevant text about a topic of interest (e.g., immigration
policies), they may miss other equally relevant text while including some irrelevant ones. Crucially,
because most topic detection methods are trained, they may unintentionally contain or propagate certain
biases (e.g., extracting more instances written by women where gender balance is expected), resulting
in a skewed data collection that may lead social scientists to draw incorrect conclusions. This paper
explores the interactions between social biases and automatic topic detection models, and their impact
on the resulting data collection. Our goal is to help social scientists gain insights about biases in text
analytic so as to mitigate such biases in their data collections.

More specifically, we examine the role of political ideology biases (liberal-leaning, denoted as Blue,
and conservative-leaning, denoted as Red) in the process of collecting data about certain social topics
(immigration and gun control) from Twitter. We observe that biases may be introduced at three major
junctures of the data collection pipeline. First, it may be introduced in the data source itself (e.g., certain
forums may have strong political leanings), but social scientists typically choose their data intentionally
and are aware of pre-existing biases therein (Malik et al., 2015; Kosinski et al., 2015; Cihon and Yasseri,
2016). Second, biases may be introduced in the way in which “topic relevance” is defined. For example,
domain experts may be consulted to identify a set of keywords or sample instances that are indicative
or representative of the topic of interest. Thus, any unconscious bias on the part of the domain experts
would be encoded into these keywords and examples (King et al., 2017), which would then serve as a
noisy training corpus for developing a topic classifier. Third, the choice of the computational models for
performing relevance classification may amplify or mitigate the impact of the biases.

Through a suite of empirical analyses, this work studies the effect of biased keywords (Blue-leaning,
Red-leaning) on downstream training and retrieval: 1) To what extent does a trained classifier propagate
the bias seen in the training data? Can it learn to generalize and blunt some of the bias? 2) To what
extent do biases in the training corpus degrade the overall retrieval ability of the classifier? Specifically,
we generate strongly Blue-leaning and Red-leaning noisy training sets, and we compare the impact of

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/.



4874

these training sets on three common off-the-shelf models: GloVe (Pennington et al., 2014), ELMo (Peters
et al., 2018), and BERT (Devlin et al., 2018). The three models are chosen to span a range of model sizes
and representational power. We find that of the three off-the-shelf models, BERT more frequently suffers
a significant drop in retrieval quality and propagates more bias when trained on biased data.

We then propose a method to mitigate the bias. That is, we want a classifier that is oblivious to an
instance’s group affiliation to Blue or Red, yet still performs the main task of judging the instance’s rele-
vance to the topic. Our approach adapts Domain-Adversarial Training (Ganin et al., 2016) for the three
off-the-shelf models. Experimental results show that the proposed approach mitigates the unintended
bias at no or little cost of retrieval accuracy as compared to the original models; in fact, the retrieval
accuracy for the modified BERT is slightly boosted. The code and data for this project is available.1

2 Political Ideology Bias on Social Topic Detection

We investigate the impact of political ideology biases on extracting tweets relevant to specific social
topics. Unlike gender or racial bias, which has been widely studied in language representation, machine
translation or relation extraction (Stanovsky et al., 2019; Gaut et al., 2020; Blodgett and O’Connor,
2017), there exists fewer work on political ideology biases. Political ideology biases on social topic
detection may arise from the difference in language usages between political ideological groups. Prior
studies have compared different language usages between political ideological groups such as conserva-
tives and liberals in the US. Such differences are reflected in general linguistics patterns such as language
complexity (Schoonvelde et al., 2019) and emotions associated with language (Wojcik et al., 2015).
Moreover, while talking about the same topic, language devices, such as specific types of metaphors,
are often found to be different, which are associated with the groups’ distinct political background and
moral concerns (Dehghani et al., 2011; Lakoff, 1995). These observations indicate that the information
producers come from diverse political ideological backgrounds, and the selection of keywords is critical
for obtaining balanced and representative data points. Therefore, we first examine the political ideology
biases introduced from in human-selected keywords.

2.1 Data Source: Twitter

We focus on Twitter because it is a widely-used space for people to express their views on social topics.
For our study, we rely on a prior work (Yang et al., 2017) that collected data from publicly posted tweets
using official Twitter APIs during a time-frame close to the 2016 U.S. Presidential election. Two groups
of users are identified – Clinton-supporters (Blue) and Trump-supporters (Red) – that are likely to have
distinct political and ideological preferences. Group membership is defined as an exclusive follower;
i.e., Twitter users who followed only one presidential election candidate but not the other. In their study,
Yang et al. (2017) have validated the concept that exclusive followers make good proxies for group
affiliations. Our final raw corpus used for this study consists of over 7 million tweets. More detail for
our data collection is described in Section 4.1.

2.2 Quantifying Bias in Keywords

For any controversial topic, some useful keywords are necessarily going to be biased toward one group
or another. Even taken as a set, the keywords that a human expert came up with may reflect the bias
of that expert. A useful piece of information, therefore, is if we could quantify the level of bias in the
keywords. It could inform the experimenters on whether they should recruit additional diverse experts to
expand their keyword set.

Since we have the ground truth for the political group (Red/Blue) of each tweet, we could use a simple
ratio between the numbers of tweets containing keyword x between one group with the other as the
metric, but a better metric is to apply a Chi-square test because it takes deviation into consideration
for estimating the probability. More specifically, we evaluate the bias of each keyword by two-tailed
Pearson Chi-square Test (details in Appendix A). The root challenge of this quantifying methodology
is that due to the sheer size of the raw corpus, we do not have the full ground truth for topic relevance

1https://github.com/MeiqiGuo/COLING2020-BiasStudy



4875

Immigration Gun control
Bias Group Num Example Num Example
Blue 9 #NoBanNoWall,

undocumented immigrant
12 #NoBillNoBreak,

gun reform
Neutral 6 deportation,

asylum
8 gun regulation,

#momsdemandaction
Red 14 illegal alien,

#buildthewall
14 second amendment,

gun free

Table 1: Number and examples of keywords in each bias groups.

(i.e., whether a tweet is about gun control or immigration for all tweets). A direct consequence is that
we cannot identify all the high-precision keywords by brute-force; thus, our study also relies on human-
chosen keywords. Even though keywords chosen by an expert may be biased, the ensemble of keywords
from diverse experts is much less likely to be biased (King et al., 2017). Therefore, we approximate the
ground truth for topic relevance by the ensemble of human-chosen keywords for the Chi-square test of
each single keyword.

We selected the topics of gun control and immigration from the ProCon website2 because both have
engaged enthusiastic political debates, with extremely conflicting stances and opinions from opposing
political camps. Keywords are collected from diverse experts who are familiar with or have worked on
these social topics in tweet corpus. There are 29 keywords for the immigration topic and 34 keywords
for the gun control topic. We assign each keyword to the Blue-leaning, Red-leaning or unbiased (neutral)
group by setting the confidence level of the Chi-square test equal to 99%. Table 1 shows the number of
keywords in each group as well as some examples, which reveals that most (around 75%) expert-selected
keywords actually have political ideology bias. Moreover, some keywords are extremely biased, such as
“#NoBanNoWall” for the topic immigration and “#NoBillNoBreak” for the topic gun control (refer to
Appendix B which shows the exact Z-test scores for each keyword). Our findings verify our hypothesis
that the language usages by different political ideology groups are often found to be different, even while
talking about the same topic. These observations suggest that a perfectly balanced selection of keywords
or a fully representative set of data points of diverse political ideological camps may not be achievable
in practice. Therefore, there is a pressing need to study how biases propagate through topic detection
models when they are trained on biased keywords.

3 Bias Propagation through Models

Unlike well-curated and annotated benchmark datasets, raw social media data is sprawling and unorga-
nized. Contributors come from diverse backgrounds, with different racial origins, personalities, educa-
tion levels, etc.; they may hold many kinds of implicit biases, some of which may not have been identified
by the social scientists carrying out the experiment. Under this setting, prior work for addressing the bias
and ethical issues such as data statements (Bender and Friedman, 2018) may not be applicable. Nonethe-
less, data sources such as Twitter remain a powerful resource that researchers are willing to tap into.
Therefore, it is important to compare how different NLP systems perform on potentially biased training
data and to develop approaches for mitigating bias propagation through models.

We consider bias propagation in two dimensions: 1) To what extent does a model trained on biased
examples tend to detect more instances with the same bias? 2) How does the learned bias interact with
relevance? (Does a biased classifier simply retrieve fewer instances of the other group, or does it actually
retrieve less relevant instances for that group?). We also want to determine whether certain types of
NLP systems are more likely to propagate the bias. Given that NLP models are built with a diverse of
architectures (transformers, RNN, etc.) and the number of trainable parameters varies from hundreds to
billions, we define the type of NLP systems along their context representations and sizes.

2This website has organized and collected major arguments and researches relevant to controversial issues in the US, in
which the information was arranged into pros and cons that reflect the opposite stances and ideas around the issues.
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Prior work shows that complex models, such as BERT, do quite well for many NLP applications.
Multi-head attention allows BERT to be able to capture complex and fine-grained patterns for the target
prediction. On the other hand, big complex models with numerous training parameters are more likely to
be overfitted when there are not enough training data (Yin and Shen, 2018). Therefore, it is not obvious
what might happen with biased-trained large complex models: do they succeed in using ”real” patterns
for the target task (e.g., predict relevant tweets in our case); or do they make use of the bias seen in the
training data (e.g., capitalize on superficial patterns in the biased data) for reaching a minimum loss?
Our work aims to answer this question by examining three representative NLP models under multiple,
differently biased training sets.

3.1 Comparison between Different Off-the-shelf NLP Models
Our study is over two state-of-the-art NLP models, representing high performance approaches, and one
simpler model, representing the benchmark. We compare three different topic detection models which
are respectively built with BERT, ELMo, and GloVe. For predicting relevant tweets of a target topic,
we fine-tune the BERT model with just one additional output layer. When we build topic detection
models using ELMo and GloVe, we add a Bi-LSTM layer after ELMo/GloVe as the text encoder, then
feed it forward through one output layer for predicting relevance. These three text encoder models have
different architectures and sizes, shown as below.

BERT (Devlin et al., 2018) A language representation model whose architecture is deep bidirectional
transformers and which is pre-trained on large-scale unlabeled text corpus. It can be fine-tuned with just
one additional output layer to create state-of-the-art models for a wide range of tasks, such as question
answering and language inference. The base BERT model has 110M trainable parameters.

ELMo (Peters et al., 2018) A large-scale pre-trained deep contextualized word representation. Con-
textual word vectors are learned functions of the internal states of a deep bidirectional language model.
These representations significantly improve the state of the art across six challenging NLP problems,
including question answering, textual entailment and sentiment analysis, at the time it was released. Our
topic detection model built with ELMo has 3M trainable parameters.

GloVe (Pennington et al., 2014) A traditional distributed word representation learnt from global log-
bilinear regression model of word-word co-occurrence matrix. It could capture fine-grained semantic
and syntactic regularities using vector arithmetic. Our topic detection model built with GloVe has 16M
trainable parameters (the number of parameters is linearly correlated with the vocabulary size).

We intentionally experiment with these three NLP models in order to answer the question about the
relation between model complexity and robustness to bias, because they are respectively good repre-
sentatives of bidirectional transformers, bidirectional LSTM and single word vectors. Moreover, their
parameter sizes are in different magnitudes.

3.2 Proposed Approach for Mitigating Bias Propagation
One promising explanation for bias propagation of ML models is that inductive bias in gradient descent
methods results in the overestimation of the importance of moderately-predictive “weak” features if
training data is biased and insufficient (Jayakumar et al., 2019). Due to the difference in language
use between political ideological groups, topic detection models are biased towards learning frequent
spurious correlations in the training data instead of learning true indicators of relevance. For example,
when most immigration-relevant tweets are posted by users in Blue while Blue and Red users are evenly
distributed in non-relevant tweets in the training data, the text classification systems may overestimate
the importance of Blue users language features as the signal of relevance. This could result in a lose of
retrieval accuracy for both Blue and Red tweets and especially a low recall for Red tweets during the test
time.

The reason for bias propagation of ML models is close to domain adaptation, in which training and test
data come from similar but different distributions. Ben-David (2007) suggests that a good representation
for cross-domain transfer is one for which an algorithm cannot learn to identify the domain of origin of
the input observation. We expect something similar here: an ideal representation of tweets should be
invariant to group affiliation (Blue/Red) as well as discriminant to topic relevance. With this thought, we
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Figure 1: Model architecture of our proposed approach. Encoder could be BERT, ELMo+BiLSTM or
GloVe+BiLSTM. The top Feed Forward NN (in orange) is the class label predictor. The bottom Feed
Forward NN (in yellow) is the political group predictor.

propose an approach inspired by a domain adaptation technique – Domain-Adversarial Neural Networks
(Ganin et al., 2016) as a way to mitigate the bias propagation. Prior work uses adversarial feature learning
for demoting latent confounds with respect to the task of native language identification (Kumar et al.,
2019); for interpreting computational social science with deconfounded lexicon induction (Pryzant et
al., 2018); or for preserving privacy by removing demographic attributes (Li et al., 2018). Xie (2017)
demonstrates the effectiveness of adversarial feature learning on fair classifications. However the datasets
they used (for predicting the savings, credit ratings and health conditions of individuals) have no natural
language text input. Our work focuses on state-of-the-art NLP models (such as BERT) and applies
adversarial feature learning to mitigate the political ideology bias.

Our goal is to train a classifier that learns to accurately predict the relevance, while ignoring superficial
patterns biased with political group present in the training set. The architecture of our proposed model
is shown in Figure 1. The input tweet x first goes through a text encoder e(x; θe) for getting a feature
vector fx as the text representation. The encoder could be BERT, ELMo+BiLSTM or GloVe+BiLSTM,
exactly same as what we describe in Section 3.1. Then the feature vector fx is fed into two one-layer
feed forward neural networks: 1) r(fx; θr) (FF in orange in Figure 1) for predicting whether x is relevant
or not; 2) g(fx; θg) (FF in yellow in Figure 1) for predicting whether x is posted by a Blue or Red user.
As gradients back-propagate from the group prediction g heads to the encoder, we pass them through a
gradient reversal layer (Ganin et al., 2016), which multiplies gradients by −1. If the cumulative loss of
the relevance prediction is Lr and that of the group classification is Lg, then the loss which is implicitly
used to train the encoder is Le = Lr − αLg (with loss weighted by α), thereby encouraging the encoder
to learn representations of the text which are not useful for predicting the political group. We use Cross-
Entropy for computing Lr and Lg:

Lr =
1

N

i=N∑
i=1

CE(r(e(xi)), yi)

Lg =
1

N

i=N∑
i=1

CE(g(e(xi)), gi)

In this work we use those three off-the-shelf NLP models as text encoder for comparing directly with
Section 3.1, but the proposed approach is applicable to other encoder models as well.

4 Experiments

To address the central questions raised in this work – how biases are propagated in several widely-used
NLP models and their effect on the overall retrieval accuracy, we conduct experiments to quantify the
impact of biased training. To do so, we need to generate training sets for which we can measure the
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Immigration Gun control
Training Test Training Test

Kblue 17,755 2,061 4,340 486
Kred 8,606 947 4,218 509
Ktotal 26,642 3,007 9,244 1,049

Table 2: Number of relevant tweets by the keyword approach in the training and test set.

degree of bias along the Blue-Red spectrum. We also need metrics for determining the quality and bias
of retrieved tweets. With this evaluation framework, we compare how different NLP models perform
under multiple, differently biased training sets on two social topics – immigration and gun control. Then
we evaluate the effectiveness of our proposed bias mitigating approach under the same setting.

4.1 Experimental Setup

Data: In this study, we build on data acquired from prior work by Yang et al.(2017). They collected
over 7 million tweets posted by the exclusive followers of Trump and Clinton within a nine-month period
(between June 2016 and February 2017). We pre-process this Tweet corpus by removing emoji, website
links and usernames. Then we split it into training and test set by a ratio of 9:1. Topic detection models
are trained and validated on the training corpus, and the retrieval quality and retrieval bias are evaluated
on the test set.

Training Set Settings: For each topic we collect a set of keywords (referred as Ktotal) from experts
and compute their bias scores (Section 2.2). Keywords that don’t pass the Chi-square test at the confi-
dence level equal to 99% are considered as biased. If the z-score of a biased keyword is positive, it is
biased towards Blue; otherwise, it is biased towards Red. We refer the set of Blue-leaning keywords as
Kblue and Red-leaning keywords as Kred. For each keyword in Kblue (respectively Kred), we extract all
tweets containing those keywords from the training corpus as “relevant” examples; we randomly select
an equal number of tweets that don’t contain any keyword as “irrelevant” examples. In this way we
construct a noisy training dataset biased towards Blue (respectively Red). Similarly, we also construct
a full training dataset with Ktotal. We report the number of relevant tweets by this keyword approach
in the training and test set in Table 2. Notice that for the topic of immigration the size of Blue-leaning
training set is twice more than Red-leaning training set.

Model Settings: We use the publicly available versions of BERT (bert-base-uncased3), ELMo
(orginal4) and GloVe (common crawl 830B300d5) with the recommended parameter settings. The loss
weight α for the adversarial training gradually increases from 0 to 1 along with the increasing of training
batch number. When training our bias mitigating approach, we keep most hyper-parameters same as its
correspondent original model, e.g., learning rate, epoch number, batch size, maximum sequence length,
etc. For ELMo+ADV we tune the dropout parameter and report the one without RNN input dropout in
Section 4.3.

Evaluation Metrics: While our data contains the ground truth for whether an instance belongs to
Blue or Red, we do not know a priori whether it is relevant to some topic or not. To determine model
performance on the dimension of relevance, we use precision at N , which computes the precision score
of a set of instances from the topN prediction scores. The relevance is judged by crowdsourcing workers
via Amazon Mechanical Turk. In order to evaluate the retrieval quality, we need to choose a reasonable
N for the metric P@N: if N is too large or too small, then all models would have a very low or high
precision score so that the comparison between them is not significant. We find that the number of
relevant tweets extracted by Ktotal from the test set is a good candidate for N. It is not too large because
we expect there to be at least this many relevant tweets in the test set; and it is not too small, since
keywords Kred or Kblue which are used for generating training sets are subsets of Ktotal. As Table 2

3https://storage.googleapis.com/bert models
4https://allennlp.org/elmo
5https://nlp.stanford.edu/projects/glove/
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Immigration P@3000 Gun control P@1000
Blue-leaning Train Red-leaning Train Blue-leaning Train Red-leaning Train
All Blue Red All Blue Red All Blue Red All Blue Red

Baseline 0.66 0.66 0.66 0.29 0.30 0.28 0.44 0.44 0.36 0.46 0.46 0.44
GloVe 0.77 0.72 0.89 0.68 0.70 0.65 0.74 0.81 0.59 0.66 0.64 0.68
ELMo 0.86 0.85 0.88 0.69 0.67 0.71 0.77 0.78 0.74 0.75 0.73 0.77
BERT 0.74 0.73 0.78 0.69 0.67 0.72 0.79 0.80 0.75 0.59 0.66 0.52

Table 3: Retrieval accuracy of different topic detection models trained on Blue-learning or Red-leaning
training sets. Columns “All”, “Blue” and “Red” respectively show the accuracy for all retrieved tweets,
retrieved tweets posted by Blue users and retrieved tweets posted by Red users. Within each column of
“All”, the best model is bolded; if a model’s performance is over 10% worse than the best one, then it is
marked in red color.

shows, there are 3007 tweets and 1049 tweets which contain keywords from Ktotal for immigration and
gun control, respectively. Therefore, we use P@3000 and P@1000 (round 3007 and 1049 to hundred)
as evaluation metric respectively for immigration and gun control. For reducing the annotation cost, we
randomly select 100 samples from the top 3000 or 1000 for human annotation which could significantly
represent the performance of models. To determine the level of bias in a model’s predictions, we compute
the Blue-versus-Red Log Odds Ratio to determine how likely a retrieved instance (one of the top N ) is
from Blue instead of the Red. The first odds computes # of Blue instances: # of Red instances in top N ;
the second odds computes the same odds in the non-retrieved instances.

Annotation Process: The ground-truth relevance of retrieved tweets is annotated by crowdsourcing
workers via Amazon Mechanical Turk. Selected workers are well trained and carefully evaluated by
qualification tests in order to make sure they know the coverage of each social topic (refer to Appendix
C), for example immigration covers a broad set of sub-topics ranging from a specific policy (e.g., DACA),
border security, birthright citizens, to labor market. We add gold standard instances to each annotation
batch for monitoring the annotation quality. In addition, each instance is annotated by two annotators and
a third person is involved if they don’t meet an agreement. The average accuracy and inter-agreement of
our annotations are both above 90%.

4.2 Results of Comparing Off-the-shelf NLP Models
The retrieval quality of different topic detection models trained on biased training sets is shown in Table
3. Models built with GloVe, ELMo and BERT are trained on Blue-leaning and Red-leaning training
sets. In addition to the three off-the-shelf models, we also include a naive keyword approach as baseline
which only retrieves tweets containing training keywords. Let’s first look at columns “All” which show
the accuracy for all retrieved tweets. For the both topics, it is not surprising that trained NLP models
generally outperform the keyword-extraction baseline. This means that the models are able to learn some
patterns besides the keywords and generalize to tweets which do not contain any keyword. For more
easily comparing between models, the best model within the column is bolded; if a model’s performance
is over 10% worse than the best one, then it is marked in red color. Our experimental results show
that ELMo-based model has the best overall retrieval quality; BERT-based model is the most negatively
affected by the training bias. Next, we compare models’ accuracy for retrieved tweets posted by Blue
users and Red users by looking into columns “Blue” and “Red”. In general, models have a better retrieval
accuracy for tweets from the group towards which the training set is biased (as the second, third and
fourth big column show), except for the first big column (when models are trained on the Blue-leaning
set for the topic immigration, models have a better retrieval accuracy for Red tweets than Blue). We also
report the retrieval accuracy for models trained on the full training set (constructed from Ktotal) in Table
4. The performance of different models are close to each other.

Next, we evaluate to what extent the political bias is propagated to the retrieved (predicted top N )
tweets by different NLP models. Blue-versus-Red Log Odds Ratio of different topic detection models
trained on Blue-leaning or Red-leaning training sets are shown in Table 5. We use the bias in each training
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Immigration P@3000 Gun control P@1000
Baseline 0.86 0.83
GloVe 0.88 0.85
ELMo 0.93 0.82
BERT 0.89 0.83

Table 4: Retrieval accuracy for models trained on the full training set (constructed from Ktotal).

Immigration Gun control
Blue-leaning Train Red-leaning Train Blue-leaning Train Red-leaning Train

Training set 0.81 -0.16 2.08 -0.29
GloVe 0.69 0.10 0.82 -0.08
ELMo 0.60 0.14 0.84 -0.02
BERT 0.62 0.14 0.94 0.05

Table 5: Blue-versus-Red Log Odds Ratio of different topic detection models trained on Blue-leaning or
Red-leaning training sets. Within each column, the best model is bolded. The closer to 0, the better (less
bias). Positive means leaning to Blue; negative means leaning to Red.

set as baseline. The closer to 0 Log Odds Ratio is, the less the political bias is propagated. Positive means
leaning to Blue and negative means leaning to Red. Experimental results show that for both topics, NLP
models are all able to mitigate political ideology bias from training data. Especially for models trained
on Blue-leaning set of the topic gun control, the initial training set is highly biased towards Blue group
with an Log Odds Ratio equal to 2.08, NLP models are able to mitigate 61% less bias. For comparing
between models more easily, the best model within each column is bolded. We find that ELMo and
GloVe-based models propagate the least of the bias; BERT-based model propagates the most of the bias
seen in the training data.

Taking both the retrieval accuracy and retrieval bias into consideration, we conclude that ELMo-based
model is the most robust to training bias, while BERT-based model is the most negatively affected by the
training bias. Our findings inform practitioners to choose the more robust model when training data is
biased. Moreover, it is important to develop new approaches for mitigating the impact of bias, especially
for BERT-based models.

4.3 Results of the Bias Mitigating Approach
We compare our bias mitigating approach with its original models on both retrieval accuracy and retrieval
bias metrics. We report the performance of our bias mitigating approach in both a more realistic training
scenario – models are trained on the full training data, and extremely biased cases – models are trained
on our generated strongly Blue-leaning or Red-leaning training sets. The full training dataset is slightly
biased towards Blue with a Blue-versus-Red Log Odds Ratio equal to 0.51 for the topic of immigration

Immigration P@3000 Gun control P@1000
Full Blue-

leaning
Red-
leaning

Full Blue-
leaning

Red-
leaning

GloVe 0.88 0.77 0.68 0.85 0.74 0.66
GloVe+ADV 0.86 0.72 0.63 0.73 0.31 0.65
ELMo 0.93 0.86 0.69 0.82 0.77 0.75
ELMo+ADV 0.82 0.84 0.59 0.73 0.66 0.71
BERT 0.89 0.74 0.69 0.83 0.79 0.59
BERT+ADV 0.90 0.86 0.65 0.79 0.87 0.71

Table 6: Retrieval accuracy of original and our proposed models trained on full, Blue-learning or Red-
leaning training sets. Our proposed model is bolded if it outperforms its base model.
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Immigration Gun control
Full Blue-

leaning
Red-
leaning

Full Blue-
leaning

Red-
leaning

GloVe 0.43 0.69 0.10 0.58 0.82 -0.08
GloVe+ADV 0.43 0.54 0.07 0.14 0.77 0.01
ELMo 0.45 0.60 0.14 0.31 0.84 -0.02
ELMo+ADV 0.34 0.52 -0.12 0.10 0.35 0.01
BERT 0.40 0.62 0.14 0.62 0.94 0.05
BERT+ADV 0.47 0.57 0.12 0.23 0.70 0.00

Table 7: Blue-versus-Red Log Odds Ratio of original and our proposed models trained on full, Blue-
leaning or Red-leaning training sets. Our proposed model is bolded if it outperforms its base model. The
closer to 0, the better (less bias). Positive means leaning to Blue; negative means leaning to Red.

or 0.61 for the topic of gun control. Table 6 shows that our proposed BERT-based model (noted as
BERT+ADV) improves the retrieval accuracy compared with the original one; for ELMo+ADV and
GloVe+ADV the retrieval accuracy slightly reduces for most cases. Table 7 shows that our proposed
models are very efficient for mitigating the bias propagation. In sum, experimental results demonstrate
that our proposed approach succeeds to mitigate bias propagation, with no or little drop of retrieval
accuracy. It works especially well for BERT-based models – mitigates the bias at the same time increases
the retrieval accuracy.

5 Conclusion

We have studied the impact of political ideology biases in different types of topic detection models and
demonstrated a domain adaptation approach as an effective way of mitigating the bias. Our experimental
results suggest that an ELMo-based model is more robust to training bias, while a BERT-based model is
more negatively affected by the training bias. Since the ELMo-based model has nearly 40 times fewer
trainable parameters than BERT, we conjecture that big complex models are more likely to propagate the
bias seen in the training set. Although we have found the proposed adaptation architecture to be helpful
for the three models, especially BERT, in terms of mitigating some of the training bias, the approach still
relies on some knowledge of the existence of the bias. This work offers a comparison point for future
studies to evaluate the effect of bias in various predictive models and opens the door for further reducing
the bias in topic detection applications.
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Appendix A Chi-square Test for evaluating keyword bias

Assume T is the corpus of tweets, K is the keyword set, the bias dimension is towards either group G1

or G2. ∀x ∈ K, the null hypothesis H0 is that the probability of a keyword x appears in relevant tweets
posted by people from group G1 and group G2 is the same. For our problem, the keyword x is unbiased
if it passes the Chi-square Test with a specific confidence level; otherwise, x is biased. The bias level is
measured by Z-statistic. The statistic test formula is shown as below:

zx =
ˆp1x − ˆp2x

ˆσDx

ˆσDx =

√
p̂x(1− p̂x)(

1

n1
+

1

n2
)

p̂x =
n1 ˆp1x + n2 ˆp2x

n1 + n2

ˆp1x =
n1x
n1

ˆp2x =
n2x
n2

where ni is the number of relevant tweets posted by groupGi, and nix is the number of tweets containing
keyword x and posted by group Gi, ∀i ∈ {1, 2}. Here a tweet is considered as relevant if it contains at
least one keyword from K.

A cut-off score zcut is computed by the confidence level based on Z-test distribution. If |zx| < zcut,
then the keyword x is considered as unbiased; if zx > zcut, then the keyword x is considered as biased
towards group G1; if zx < −zcut, then the keyword x is considered as biased towards group G2. In
this way, keywords in the set K could be divided into three groups: G1-leaning, G2-leaning and neutral.
Additionally, more is the |zx|, more biased is the keyword x.
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Appendix B Political ideology bias of each keyword

The Z-test scores for each keyword are respectively shown in Table 8 for immigration and gun control.

Immigration Gun control
Keyword Z score Keyword Z score
nobannowall 25.83 NoBillNoBreak 25.05
muslimban 20.10 gunviolence 14.32
refugee 10.37 disarmhate 13.53
immigration ban 5.14 gun violence 13.07
muslim ban 4.66 endgunviolence 9.64
immigration order 3.89 gunsense 8.10
immigrant 3.36 guncontrol 6.85
travel ban 2.99 WearOrange 6.21
undocumented immigrant 2.61 gun reform 6.17

gun safety 4.86
momsdemand 4.01
GunControlNow 2.84

deportation 1.10 PrayForOrlando 1.79
executive order 0.33 OrlandoShooting 1.77
undocumented immigration 0.22 NationalGunViolenceAwarenessDay 1.10
build a wall -0.56 momsdemandaction 1.10
asylum -1.10 gun regulation 0.90
deporting -2.05 gun death 0.87

gunskillpeople -0.11
progun -1.98

undocumented alien -2.88 gunright -4.09
mexican wall -3.10 gun law -4.44
unvetted refugees -0.48 SecondAmendment -4.65
bansyrianrefugees -0.48 gun right -6.38
sanctuary city -5.36 molonlabe -6.43
amnesty -7.29 gungrab -6.60
immigration -8.67 second amendment -6.86
deported -11.04 2ndamendment -10.58
deport -13.52 gun owner -12.15
build the wall -14.31 gun control -13.09
illegal immigration -16.38 gun free zone -14.73
buildthewall -18.54 2nd amendment -14.82
illegal immigrant -22.21 gun free -15.79
illegal alien -23.29 firearm -16.45

Table 8: Keywords and their z score for immigration and gun control. Keywords at the top are blue-
leaning; those in the middle are neutral; those at the bottom are red-leaning.

Appendix C Annotation Guidelines

C.1 Instructions for annotating the topic of immigration

A tweet is considered as relevant if it talks about anything that has to do with, but not limited to, the fol-
lowing issue categories: Borders, Birthright citizenship, Immigrant Crime, DACA and the DREAM Act,
Deportation debate, Economic impact, Immigration quotas, Immigrants’ rights and access to services,
Labor Market - American workers and employers, Law enforcement, Muslin Ban/Travel Ban, Obama
Iraq ban, Refugees, etc.
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An example for the option 1 - Relevant: “Wonder what advice she got regarding her open border plan
and especially her willingness to increase Syrian immigration?” This tweet talks about the open border
plan and Syrian immigration, which is related to the topic of immigration under the categories of Border
and Refugees;

An example for the option 2 - Not Relevant: “’Will I die, miss?’ Terrified Syrian boy suffers sus-
pected gas attack.” This tweet talks about a Syrian boy suffering a gas attack, which may be pointing to
a war or terrorist event in Syria, not necessarily directly about an immigration issue.

Instruction of some cases that may be more ambiguous:
A tweet should be considered as relevant if it: 1) mentions several topics in addition to immigration:

“I’m a woman that supports Trump to fix economy, immigration, school, military more. #MAGA3X”;
2) is short with relevant hashtags: “Against! #muslimban”; 3) talks about immigration in other countries:
“The #EU referendum has become a sinister attack on immigrants #Brexit #Xenophobia.”;

A tweet should be considered as irrelevant if it mentions a group of immigrant people such as Muslim,
Syrian refugees but doesn’t explicitly talk about immigration issues: “Wonderful news, I will suffer being
video taped shopping with my wife, while Muslim terrorists construct bombs”, or “Syrian girl, 7, who
tweeted from Aleppo meets Turkey’s Erdogan by #Reuters.”

C.2 Instructions for annotating the topic of gun control
A tweet is considered as relevant if it talks about anything that has to do with, but not limited to, the
following issue categories: the Second Amendment, Gun control laws, etc. Tweets which contain the
following hashtags are probably relevant to gun control: #NoBillNoBreak, #WearOrange, #EndGunVio-
lence, #DisarmHate, #molonlabe, etc.

Some examples for the option 1 - Relevant: 1) “Standing up for the second amendment and carrying
a firearm for self defense.” This tweet talks about the 2nd amendment, which is related to the topic
of gun control; 2) “I don’t understand why we can’t ban assault weapons. We all know they are only
used for hunting people. #PrayForOrlando #guncontrolplease.” This tweet talks about banning weapons
and contains the hashtag “#guncontrolplease”, which is relevant to the topic of gun control; 3) “Stay
Strong , Represent the American people #NoBillNoBreak #DisarmHate.” This tweet contains hashtags
“#NoBillNoBreak” and “#DisarmHate” which are both relevant to gun control issues.

Some examples for the option 2 - Not Relevant: 1) “Apple replaced the gun emoji with a water gun in
iOS 10.” This tweet talks about gun emoji, which is not related to a gun control issue; 2) “GUN GAME
in MWR! WINTER CRASH EDITION!” This tweet talks about gun games, which is not related to a gun
control issue; 3) “The Fourth Amendment protects you from unreasonable searches and seizures.” This
tweet talks about the fourth amendment which is irrelevant to gun control issues.

Instruction of some cases that may be more ambiguous:
A tweet should be considered as relevant if it: 1) mentions several topics in addition to gun control:

“I’m a woman that supports Trump to fix economy, immigration, school, gun control more.”; 2) is short
with relevant hashtags: “This is good. #NoBillNoBreak.”;

A tweet should be considered as irrelevant if it mentions a gun death event or a gun violence news, but
the context is not about gun control: “Love will always conquer hate. #PrayForOrlando #OrlandoShoot-
ing”; “Same ppl who just yesterday were praying against #LGBTQ ppl are now praying for the #LGBT
victims. #Hypocrisy #PrayForOrlando #p2 #Orlando”; “He unknowingly followed us to LA. After he
raped a kid killed a dude in OR the LA 5-0 caught him jacking a car. Gun shots were exchanged.”, or
“Turkey car bomb and gun attack on courthouse in Izmir”.


