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Abstract
We propose a novel method of automatic sentence alignment from noisy parallel docu-
ments. We first formalize the sentence alignment problem as the independent predictions
of spans in the target document from sentences in the source document. We then in-
troduce a total optimization method using integer linear programming to prevent span
overlapping and obtain non-monotonic alignments. We implement cross-language span
prediction by fine-tuning pre-trained multilingual language models based on BERT archi-
tecture and train them using pseudo-labeled data obtained from unsupervised sentence
alignment method. While the baseline methods use sentence embeddings and assume
monotonic alignment, our method can capture the token-to-token interaction between
the tokens of source and target text and handle non-monotonic alignments. In sentence
alignment experiments on English-Japanese, our method achieved 70.3 F1 scores, which
are +8.0 points higher than the baseline method. In particular, our method improved by
+53.9 F1 scores for extracting non-parallel sentences. Our method improved the down-
stream machine translation accuracy by 4.1 BLEU scores when the extracted bilingual
sentences are used for fine-tuning a pre-trained Japanese-to-English translation model. 1

1 Introduction
Sentence alignment is the task that automatically extracts parallel sentences from noisy parallel
documents. Parallel sentences are used to train cross-language models, especially for machine
translation (MT) systems. Both the quantity and quality of the parallel sentences used for train-
ing are crucial for developing an accurate neural machine translation (NMT) system (Khayrallah
and Koehn, 2018).

Recently, automatic sentence alignment methods using neural networks have gained popular-
ity (Grégoire and Langlais, 2018; Artetxe and Schwenk, 2019a; Yang et al., 2019; Thompson
and Koehn, 2019). Such systems have a scoring function to calculate how the two sentences are
parallel from sentence embeddings and obtain an alignment hypothesis from these scores with
an alignment algorithm. These embeddings are obtained by separately encoding each source
and target sentence. However, these prior works do not utilize context information and the
interaction between the tokens of the source and target text although it may be useful for calcu-
lating the score. Moreover, alignment algorithms of these works assumes monotonic alignments
although not every alignment of noisy bilingual documents is monotonic. Quan et al. (2013)
described a legislation corpus as an example of non-monotonic alignments. In such cases, the
existing methods that assume monotonicity impair the accuracy.

In this paper, we propose a novel sentence alignment method, called SpanAlign. That can be
decomposed into two methods: scoring and optimization.

We formalize the scoring method as a cross-language span prediction model, similar to models
for the SQuAD 2.0 question answering task (Rajpurkar et al., 2016). Figure 1 shows an example.

1Our implementation and datasets will be available at https://github.com/nttcslab-nlp/spanalign.
This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http:
//creativecommons.org/licenses/by/4.0/.
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In meteorology, precipitation is any product of the condensation of atmospheric water vapour
that falls under gravity. The main forms of precipitation include drizzle, rain, sleet, snow,
graupel and hail...
Q. What causes precipitation to fall?
A. gravity
I said, “Would you go to governments and lobby and use the system?” He said, “No, I’d take
to the individuals.” It’s all about the individuals. It’s all about you and me. It’s all about
partnerships...
Q. 全ては個人についてのことであり
A. It’s all about the individuals.

Figure 1: Example of SQuAD-style monolingual question answering (upper) and sentence align-
ment task from bilingual document based on cross-language span prediction (lower). In sentence
alignment, Q. denotes a source sentence, and A. denotes a target text that corresponds the source
sentence in a given target document.

In sentence alignment, given a target text and source sentences, the model predicts a translation
of the source text as the answer, which is a span in the target text, and calculates its score. We
used pre-trained multilingual language models based on BERT architecture (Devlin et al., 2019)
and trained them using only pseudo-labeling data obtained from existing sentence alignment
methods. One advantage of our approach is its adoption of cross-attention, which can capture
context information and the token-to-token interaction between input sentences. Moreover, this
approach could work well on various language pairs without human-annotated data.

Since this span prediction method independently predicts the target spans for source sen-
tences, the target spans might overlap. Moreover, because this method is asymmetric, the
source-to-target predictions might differ from the target-to-source ones. Therefore, we propose
an optimization method that introduces a total optimization method using integer linear pro-
gramming (ILP), inspired by DeNero and Klein (2008) and Nishino et al. (2016). This method
can use the predictions of both directions and extracts non-monotonic alignments.

We conducted sentence alignment experiments to evaluate the accuracy of our proposed
method using an actual noisy newspaper dataset on English-Japanese articles, and our method
significantly outperformed the previous works. We also evaluated on a downstream MT task
and showed that the proposed method actually improved its performance.

2 Related Works

Previous sentence alignment methods are based on the context-independent similarity of source
and target sentences, including sentence length (Gale and Church, 1993), bilingual dictionaries
(Utsuro et al., 1994; Utiyama and Isahara, 2003; Varga et al., 2005), a machine translation sys-
tem (Sennrich and Volk, 2011), and multilingual sentence embeddings (Thompson and Koehn,
2019). They usually use dynamic programming, which assumes that the alignments are mono-
tonic. On the contrary, alignment methods using integer linear programming (ILP), which does
not assume a monotonic alignment, have also been proposed. Nishino et al. (2016) formalized
a sequence alignment problem as a set partitioning problem, which is a type of combinatorial
optimization problem, and solved it by using ILP. DeNero and Klein (2008) showed that the
problem of finding an optimal alignment can be cast as an ILP, which can quickly and reliably
find the globally optimal alignment. Following these works, we use ILP for optimization to
handle non-monotonic alignments.

Utiyama and Isahara (2003) proposed a method using the score of document alignment for
sentence alignment. To obtain alignments for a document, they first translated a source docu-
ment into a set of words from the target language using bilingual dictionaries. They then used
each target document as a query and searched for the most similar source document in terms
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of BM25 (Robertson and Walker, 1994). After that, they aligned the sentences in the aligned
documents using DP matching (Gale and Church, 1993; Utsuro et al., 1994) based on similarity
measure SIM, which is defined as the relative frequency of the one-to-one correspondence be-
tween the source and target words obtained from bilingual dictionaries. As a reliable measure
for document alignment, they used AVSIM, which is the average of the SIMs obtained from the
sentence pairs in the document pair. As a reliable measure for sentence alignment, they used the
product of the document similarity AVSIM and the sentence similarity SIM. Use of document
similarity for sentence alignment performed robustly for predicted documents alignments which
are not always parallel. This method is commonly used for building publicly available English-
Japanese parallel corpora, including the shared task data for the NTCIR Patent Translation2

and the Workshop on Asian Translation (WAT)3.
In a recent work, Thompson and Koehn (2019) proposed a sentence alignment method, called

Vecalign, which uses bilingual sentence embeddings (Artetxe and Schwenk, 2019a) and recursive
DP approximation. They used a German-French test set and achieved state-of-the-art results.
Their method also effectively works for low- and medium-resource language pairs with the Bible
dataset and used for building the ParaCrawl corpus, which is one of the largest parallel corpus
across 23 EU languages with English by crawling the web (Bañón et al., 2020).

Since the targets of previous works on the sentence alignment task were mainly among Euro-
pean languages, it is unclear whether these methods are effective on such distant language pairs
as English and Japanese. In this paper, we also explore how well previous methods work well
for such language pair.

3 Proposed Method

3.1 Cross-language Span Prediction for Scoring Alignments
We first formalize the sentence alignment problem as a cross-language span prediction task from
source sentences into spans in a target document. Figure 2a shows an example. The cross-
language span prediction task is defined as follows: Suppose we have a source document with N
tokens F = {f1, f2, . . . , fN} and a target document with M tokens E = {e1, e2, . . . , eM}. Given
consecutive source sentences Q = {fi, fi+1, . . . , fj} that spans (i, j) in source document F , the
task must extract target text R = {ek, ek+1, . . . , el} that spans (k, l) in target document E. For
sentence alignment, it is necessary to handle many-to-many sentence alignments. Since we input
consecutive source sentences as the input span, we can handle both 1-to-1 and many-to-many
alignment in the proposed framework.

To solve the span prediction task, the model chooses a span (k, l) of target text R that
corresponding to source sentences Q in target document E. The score of span ω is the product
of its start position probability p1 and end position probability p2, defined as:

ωijkl = softmax (p1(k | E,Q) · p2(l | E,Q)) . (1)

Here, we apply softmax function for 10-best scores to fix the scale of score since these scores
tend to be small values without softmax.

For calculating p1 and p2, we apply the pre-trained multilingual language representation mod-
els based on BERT architecture (Devlin et al., 2019). Even though these models were designed
for monolingual language understandings tasks for several languages, we found that it also works
surprisingly well for this cross-language span prediction task. In the model, the source sentences
and the target document are concatenated to generate a sequence like ”[CLS] source sentences
[SEP] target document [SEP]” as input, where ’[CLS]’ and ’[SEP]’ are respectively classification
and separator tokens. We add two independent output layers to the pre-trained model. These
layers predict the probability of token indexes p1 and p2 in the target document that become
the start and end of an output span.

2http://ntcir.nii.ac.jp/PatentMT-2/
3http://lotus.kuee.kyoto-u.ac.jp/WAT/
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(a) Independent span prediction from each sentence in F. (b) ILP for consistent alignments.

Figure 2: Illustration of proposed method. (a) shows independent span prediction on scoring
module and (b) shows global optimal alignments which are solved inconsistencies using ILP.

The best span (k̂, l̂) is chose by maximizing the score of a span ωijkl, as follows:

(k̂, l̂) = arg max
(k,l):1≤k≤l≤M

ωijkl. (2)

Furthermore, we need to determine whether the target text corresponding to the source sen-
tences exists since the actual noisy parallel corpora contain non-parallel sentences as noise. We
address this problem with the values predicted at the position of ’[CLS]’ given source span (i,j)
to calculate non-parallel score φij . If this score exceeds the scores of the predicted spans, we
assume that no corresponding target text exists.

Since the predicted spans are not necessarily agreed with sentence boundaries, we have to
convert it into sentence sequence for sentence-level optimization and evaluation. Therefore, we
identify the longest sentence sequence which is completely included in the predicted span, and
regarded it as a sentence-level prediction.

3.2 ILP for Predicted Spans Optimization
In this section, we explain how to obtain many-to-many alignments using the scores that we
obtained in the previous section. First, we assume a simple method that splits a source docu-
ment into appropriate sentences, and we want to decide the best spans for them as predicted
alignments. However, this method has three problems: (1) many of the predicted alignments
overlap since the span prediction model independently predicts the target spans (like Figure
2a); (2) it remains unclear how to select appropriate input spans in the source document; (3)
prediction from a source document are probably different from those from a target document
because the span prediction model is asymmetric. Therefore, we formalize this problem as a
total optimization method that can prevent spans from inconsistencies and maximize the sum
of predicted scores in both the uni-directional and bi-directional scores. Symmetrizing the span
scores of two directions makes the span prediction more reliable and bi-directional scores are
expected to improve the alignment accuracy.

For the total optimization of sentence alignment, dynamic programming (Gale and Church,
1993) is commonly used although it assumes monotonic alignment between source and target
sentences. However, not all alignments are monotonic, especially for noisy bilingual documents.
Therefore, to obviate this assumption, we use a modified version of a previous method (DeNero
and Klein, 2008; Nishino et al., 2016) because it can handle both the non-monotonic alignment
and the null alignment of continuous segments using ILP. We formalize this problem for pre-
dicting a corresponding target span for a given source span using a neural network and find the
best non-overlapping collection of spans using ILP (see Figure 2b). We convert the predicted
scores into costs and minimize the sum of these costs instead of maximizing the sum of the
scores because it achieved higher accuracy in the preliminary experiments.

We defined score ωijkl for the target span (k, l) given source span (i, j), which is obtained
from the scoring method. By exchanging the source and target documents in the model, we also
define score ω′ijkl for the same span pairs. We respectively define non-parallel scores φij for the
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source span (i, j) and φ′kl for the target span (k, l), which mean the spans are not translated in
the other language. Let aijkl be a pair of span (i, j) in source document F and span (k, l) in
target document E. We can then define the bilingual alignments as a set of span pairs, where
there is no overlap for any span pairs in the set. The following is the ILP formalization:

Minimize
∑
ijkl

cijkl yijkl +
∑
ij

φij bij +
∑
kl

φ′kl b
′
kl (3)

Subject to yijkl, bij , b
′
kl ∈ {0, 1} (4)∑

i≤x≤j

[
bij +

∑
kl

yijkl

]
= 1, ∀x : 1 ≤ x ≤ N (5)

∑
k≤x≤l

b′kl +
∑
ij

yijkl

 = 1, ∀x : 1 ≤ x ≤M (6)

where cijkl is the costs obtained from ωijkl and ω′ijkl. yijkl is a binary variable that indicates
whether span pair aijkl is included in the alignment with yijkl = 1 (Eq.4). bij , b

′
kl is a binary

variable that indicates whether source span (i, j) or target span (k, l) is non-parallel with bij = 1
or b′kl = 1. Eq. 5 guarantees that for each sentence in source document F , there is at most one
span pair aijkl in the alignment that includes the source sentence. Eq. 6 guarantees the same
constraints for target document E. By combining the above two constraints, each sentence in
E and F is guaranteed to be included at most once in the alignment.

As discussed in Thompson and Koehn (2019), sentence alignment should seek a minimal par-
allel pair. But we found that the optimization which directly uses ω and ω′ tend to select
many-to-many alignments. To relax this problem, we penalize the cost of many-to-many align-
ment pair by multiplying the average of the number of source and target sentences. We defined
cijkl as follows:

cijkl = nSents(i, j) + nSents(k, l)
2 (1− Ωijkl), (7)

where nSents(i, j) denotes the number of sentences in the span (i, j) (= j − i + 1). Ωijkl is
introduced to weighted average ω and ω′ for bi-directional optimization:

Ωijkl = λωijkl + (1− λ)ω′ijkl. (8)

where λ is a hyperparameter that define the relative importance of the source-to-target and
target-to-source scores. By setting λ = 1 or λ = 0, the optimization becomes uni-directional; by
setting them to 0.5, the optimization becomes bi-directional.

The spans from one collection of source sentences that we obtain this way are close to a square
of the number of sentences. To reduce the computational cost, we use the best spans for each
input and filter out the others. In preliminary experiments, we found that the accuracy was not
improved even if we used more than the 1-best spans for each input. This may be because the
spans other than the 1-best one become noisy for optimization.

4 Experiments on Sentence Alignment Accuracy
We conducted the experiment to evaluate sentence alignment accuracy using an actual noisy
parallel newspaper article dataset on English-Japanese. We evaluate two variants of our method
exploiting different optimization methods: monotonic DP (Gale and Church, 1993) and ILP
(§3.2) As a baseline, we adopted Vecalign (Thompson and Koehn, 2019), which achieved state-
of-the-art results. We also compared our method with Utiyama and Isahara (2003) because it
is the defacto standard approach for building English-Japanese parallel corpora.

For evaluation metrics, we used the F1 score of sentence alignment, which is one of the standard
metrics for sentence alignment4. The score was calculated by the correct and predicted alignment

4We used strict score from this script: https://github.com/thompsonb/vecalign/blob/master/score.py
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pairs. However, this metric didn’t directly evaluate the accuracy of extracting non-parallel
sentences even though there are a lot of these non-parallel sentences in noisy bilingual documents.
Therefore, for further detailed analysis, we also calculated the Precision/Recall/F1 score for each
number of source and target sentences in alignment pairs based on our implementation.

4.1 Implementation Details
All of our models described above were implemented using huggingface/transformers (Wolf et al.,
2019). We used the base setting (12-layer, 768-hidden, 12-heads) of XLM-RoBERTa (Conneau et
al., 2019) 5 for the span prediction and ILOG CPLEX 12.8.0.0 as an ILP solver. The parameters
of the span prediction model are shared for both directions: source-to-target and target-to-
source. The hyperparameters were set as follows: The learning rate was 3e − 5, the batchsize
was 20, the number of training epochs was 5, the maximum sequence length was 384, the
maximum length of the source sentences was 158, and the doc stride was 64. Since the number
of input tokens for the models is limited, we adopted a sliding window approach to handle the
long documents. In this approach, a window for the target document input, whose length is
maximum sequence length minus length of source sentences minus three, slides with a stride of
the doc stride. We then chose the best parameters with the highest F1 score on the development
set. We consider the alignment is composed of up to 4 total sentences for each language; that is
we limited the number of source sentences to 4.

For Vecalign, we used the implementation provided by the authors6 and set the alignment
max size to 8 and the maximum number of allowed overlaps to 10. To obtain multilingual
sentence embeddings, we used LASER (Artetxe and Schwenk, 2019b), which was pre-trained on
93 languages7.

For Utiyama and Isahara (2003), we used our implementation. Sentences were split using
sentence boundary symbols8 with additional rules and tokenized by MeCab-UniDic9 for Japanese
and TreeTagger10 for English. We used the following dictionaries for our experiment: an EDR
Japanese-to-English dictionary, an EDR English-to-Japanese dictionary, and an EDR Technical
Term dictionary11. The number of entries was 483,317 for the Japanese-to-English dictionaries
and 367,347 for English-to-Japanese dictionaries.

4.2 Dataset
For the experiments on English and Japanese, we used a collection of newspaper articles from
the Yomiuri Shimbun and their translations published in The Japan News (formerly the Daily
Yomiuri), which is the newspaper’s English edition. We purchased the newspaper’s CD-ROMs
for research purposes12, and created automatically and manually aligned datasets.

We created 2,989 bilingual documents from 317,491 Japanese and 3,878 English articles pub-
lished in 2012 and automatically extracted them using Utiyama and Isahara (2003) The number
of English articles were 1.5% of Japanese articles and 60% of the English articles were aligned as
bilingual documents. We used the sentence alignment as the training data, which were obtained
using our implementation of Utiyama and Isahara (2003)13.

As the development/test set, the manually aligned dataset consists of 157 bilingual document
pairs obtained by manually searching through 182 English documents for the corresponding
Japanese documents during two one-week periods: 2013/02/01-2013/02/07 and 2013/08/01-

5https://huggingface.co/xlm-roberta-base
6https://github.com/thompsonb/vecalign
7https://github.com/facebookresearch/LASER
8！, ？, and 。 for Japanese and !, ?, :, ;, and . for English
9https://taku910.github.io/mecab/

10https://www.cis.uni-muenchen.de/˜schmid/tools/TreeTagger/
11http://www2.nict.go.jp/ipp/EDR/ENG/indexTop.html
12https://database.yomiuri.co.jp/about/glossary
13In preliminary experiments, we found that using Utiyama and Isahara (2003) achieved better results than

using Vecalign.
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English Japanese
sentences tokens sentences tokens

train 19.7 30.6 23.9 30.2
dev 17.9 32.2 18.9 29.9
test 23.8 31.5 26.2 28.0

Table 1: Average number of sentences and tokens for the dataset.

Methods Direction Precision Recall F1

Vecalign - .591 .658 .623
Utiyama and Isahara (2003) - .604 .603 .604

SpanAlign (monotonic DP)
En-Ja .644 .560 .599
Ja-En .666 .551 .603

Bi-direction .682 .611 .644

SpanAlign (ILP)
En-Ja .690 .594 .638
Ja-En .720 .611 .661

Bi-direction .734 .675 .703

Table 2: Results of sentence alignment accuracies in English-Japanese.

2013/08/07. It consists of 131 articles and 26 editorials. We manually aligned the sentences for
the 157 document pairs and obtained 2,243 many-to-many alignments. Among the manually
aligned data, we used 15 articles for the development set, the next 15 articles for the test set,
and the remaining articles and editorials as future reserve.

Table 1 shows the average number of sentences and tokens for each set. The sentences were
tokenized using xlm-roberta-base model14 from transformers.

4.3 Results

Table 2 shows the F1 scores through whole alignment pairs. Our proposed method with both op-
timizations outperformed the baseline method. Bi-directional optimization using ILP achieved
70.3 F1 scores, which are 8.0 points higher than Vecalign and 9.9 points higher than Utiyama and
Isahara (2003). It shows our proposed scoring method works more effectively than the previous
works. Bi-directional optimization using ILP also outperformed both the uni-directional opti-
mizations and the method using monotonic DP. This indicates that our proposed optimization
method can leverage both uni-directional predictions and works more effectively than monotonic
DP.

Table 3 shows the results for each number of source and target sentences in alignment pairs.
Our proposed method outperformed the previous work on all number of sentences pairs and
the method using ILP achieved the highest F1 scores except for the 1-to-2 alignment pairs.
In particular, the F1 scores of correctly identifying non-parallel source and target sentences
are 80.0 and 95.1, which is significantly higher than those of Vecalign (26.1 and 79.5). We
conjectured this is because our model explicitly classifies whether the sentence is parallel, and
both directions are trained in one model. These results indicate that our proposed model can
handle even non-parallel sentences with high accuracies and effectively work on noisy bilingual
documents.

We used four NVIDIA Tesla K80 (12GB) for training the model, which took about 53 hours.
Predicting spans for each input took about 1.9 seconds on a Tesla K80 GPU and 0.39 seconds
was the average time of optimizing the predicted spans with ILP for a document in test set.

14https://huggingface.co/xlm-roberta-base
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# of English sentences
Vecalign

0 1 2 3Utiyama
SpanAlign (DP, bidi)
SpanAlign (ILP, bidi)

#
of

Ja
pa

ne
se

se
nt

en
ce

s 0 -

1.00/.150/.261

- -1.00/.100/.182
.833/.750/.789
.933/.700/.800

1

.967/.674/.795 .685/.739/.711 .786/.702/.742 .600/.300/.400
1.00/.884/.938 .652/.765/.704 .667/.596/.629 .167/.100/.125
1.00/.907/.951 .864/.661/.749 .786/.702/.742 .857/.600/.706
1.00/.907/.951 .881/.774/.824 .795/.745/.769 .857/.600/.706

2 -

.190/.444/.267 1.00/.167/.286

-.125/.222/.160 .400/.333/.364
.333/.333/.333 .250/.333/.286
.273/.333/.300 .333/.500/.400

Table 3: Experimental results for each number of source and target sentences in alignment pairs.
Values in N-th row and M-th column denote Precision/Recall/F1 scores of N-to-M alignment
pairs. Hyphens indicate no alignment pairs in the test set.

5 Experiments on Machine Translation Task

Parallel sentences, which were extracted in the sentence alignment task, are important to train
cross-language models, especially for building machine translation systems. To evaluate the
effectiveness of our method on downstream MT tasks, we automatically and manually aligned
the sentences on actual noisy newspaper article data in a distant language pair: Japanese-to-
English. We compared our method to Vecalign (Thompson and Koehn, 2019) and Utiyama
and Isahara (2003). We extracted parallel sentences using each method and randomly sample
300,000 sentence pairs to train the NMT models. Since this newspaper dataset is noisy and the
model that only uses these datasets works poorly, we created two types of NMT models: one
is only trained on extracted parallel sentences, the other is fine-tuned by the pre-trained model
using the extracted dataset.

Moreover, to confirm the reliability of the sentence alignment costs cijkl, we took out various
amounts of parallel corpora from the extracted sentence alignment in ascending order of their
costs. We then fine-tuned the pre-trained model by using these parallel corpora and compared
the translation accuracies of each method.

5.1 Dataset

We collected our next dataset from Yomiuri Shimbun and The Japan News, as in the previous
experiments. For the training dataset, we used articles published from 1989 to 2015 (except
for articles used in manually aligned dataset) and created 110,821 bilingual documents and,
automatically aligned them by Utiyama and Isahara (2003). The settings or hyperparameters
are the identical as those of the sentence alignment experiments. For our proposed method,
we only used bi-directional optimization because it achieved the best results in the previous
experiments. The manually aligned dataset, for the development and test set, is the same
dataset used in the previous section. We created 162 parallel sentences from 15 articles for the
development set and 238 parallel sentences from the next 15 articles for the test set.



4758

Methods Extracted Only Fine-tuned
Utiyama and Isahara (2003) 0.8 14.2 (+2.7)

Vecalign 0.8 12.2 (+0.7)
SpanAlign (ILP) 4.1 18.3 (+6.8)

Table 4: BLEU scores for actual newspaper articles in Japanese-to-English. The values in
parentheses are difference of BLEU gains against the pre-trained model.

Figure 3: Comparing translation accuracies on various amounts of parallel sentence pairs.

5.2 Implementation Details
We preprocessed the data with SentencePiece (Kudo and Richardson, 2018) to create subword
vocabularies and split the sentences into subword tokens. We set the vocabulary size to 16,000,
which is shared between the source and target languages.

We created NMT models that used only extracted data using fairseq (Ott et al., 2019). These
models are based on Transformer (Vaswani et al., 2017). We set the hyperparameters as follows:
The size of the word embedding dimension was 512, the size of the feed-forward embedding was
1,024, the number of attention heads was 4, and the layers of encoder and decode was 6. For
the training settings, we used Adam optimizer with α = 5e − 4, β1 = 0.9, and β2 = 0.98. The
decoder’s output embedding matrices are shared with its input embedding matrices. We adopted
Inverse Square Root scheduler with a linear warmup of 4,000 steps to modify the learning rate.
The dropout rate was set to 0.3 and the number of tokens in each mini-batch was set to 4,096
with accumulating the gradients of 8 mini-batches for update.

We used the pre-trained model using JParaCrawl (Morishita et al., 2020), whose corpus
was created by largely crawling the web and automatically aligning parallel sentences. The
authors of JParaCrawl released the pre-trained model which was trained using 8,763,995 parallel
sentences. We fixed the models following the training settings and hyperparameters from their
SentencePiece models and scripts for fine-tuning15.

For the evaluation metrics, we calculated the BLEU scores (Papineni et al., 2002) with sacre-
BLEU (Post, 2018) to measure the translation accuracy.

5.3 Results
Table 4 shows translation accuracies of two types of models for each method. Our methods
for both types of models outperformed the prior works. In particular, on fine-tuned models,

15https://github.com/MorinoseiMorizo/jparacrawl-finetune
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our proposed method achieved 18.3 BLEU scores, which is 4.1 points higher than the next best
score. These results indicate that our proposed method works well on automatically aligned
documents and it is more useful for downstream tasks.

Figure 3 shows the results on various amounts of parallel sentence pairs. We can also see our
methods outperformed the prior works on every amount of data. Focusing on small data sizes,
BLEU scores of our methods increased sharply. This is probably because the alignment cost is
reliable and the misaligned data are filtered out.

6 Discussion

We first discuss about the usefulness of the token-level interaction for sentence alignment. In
the context of an information retrieval (IR) task, neural models are characterized as either
representation-based or interaction-based, according to their architecture (Guo et al., 2016).
The representation-based model maps a query and a document into low-dimensional spaces
and calculates its similarity. The interaction-based model calculates the similarity through the
interaction between the elements of a query and a document. Nie et al. (2018) shows that
the interaction-based model generally outperforms the representation-based model on IR task.
For sentence alignment, which is one of the cross-language IR tasks, the prior works resemble
a representation-based model, and our scoring method resembles an interaction-based model.
Our experiments, which show that our method outperformed the representation-based baseline
models, indicate that the interaction between the source and target tokens is also useful for
sentence alignment, as well as the IR task.

The proposed cross-language span prediction method can be used for any alignment scoring
between two sequences. We have already applied it to word alignment (Nagata et al., 2020),
and we would like to extend the method to other related problems.

7 Conclusion

We presented a novel method of automatic sentence alignment from noisy parallel documents
based on cross-language span prediction and optimization using integer linear programming.
Experimental results showed that our method significantly outperformed previous works and
improved the performance of downstream MT tasks in English-Japanese.

In future work, we will apply our proposed method to other language pairs, use other multi-
lingual pre-training models that support long sequence input, and incorporate with document
alignment methods. Current sentence alignment methods assume sentence boundaries are given
in advance and depend on the accuracy of sentence segmentation. However, sentence segmen-
tation often creates ambiguity, especially for low-resource languages and those whose words are
not delimited by white spaces, such as Chinese and Japanese. We are considering an extension
of our method so that it doesn’t use sentence boundaries.
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