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Abstract

Relation Classification (RC) plays an important role in natural language processing (NLP). Cur-
rent conventional supervised and distantly supervised RC models always make a closed-world
assumption which ignores the emergence of novel relations in an open environment. To in-
crementally recognize the novel relations, current two solutions (i.e, re-training and lifelong
learning) are designed but suffer from the lack of large-scale labeled data for novel relations.
Meanwhile, prototypical network enjoys better performance on both fields of deep supervised
learning and few-shot learning. However, it still suffers from the incompatible feature embed-
ding problem when the novel relations come in. Motivated by them, we propose a two-phase
prototypical network with prototype attention alignment and triplet loss to dynamically recog-
nize the novel relations with a few support instances meanwhile without catastrophic forgetting.
Extensive experiments are conducted to evaluate the effectiveness of our proposed model.

1 Introduction

Relation Classification (RC) is a fundamental task in natural language processing (NLP), aiming to as-
sign semantic relations to the entity pairs mentioned in sentences. Currently, conventional supervised
(Zeng et al., 2014; Chen et al., 2020) or distantly supervised (Mintz et al., 2009; Zhang et al., 2019) RC
models are widely used and achieve remarkable performance. They are always based on a closed-world
assumption that the relations expressed in query instances must have appeared in the pre-defined relation
set. It is clearly limited in many realistic scenarios, especially in a dynamic or open environment. As
shown in Table 1, the query instance Q expresses the relation father which is out of the pre-defined rela-
tion set. However, current supervised RC models ignore the novel relations (i.e., out of the pre-defined
relations) and incorrectly classify this query instance into one of the pre-defined relations. To incremen-
tally recognize the novel relations, two kinds of solutions, i.e. re-training (Gidaris and Komodakis, 2018)
and lifelong learning (Wang et al., 2019; Han et al., 2020), are proposed. However, these two solutions
still suffer from the lack of large-scale labeled data for novel relations. They are prone to overfitting
on novel relations and may even lead to catastrophic forgetting on base ones (i.e., previous pre-defined
relations) when given insufficient training data for novel relations (Xiang et al., 2019).

In contrast, it is intuitive that the human can learn new knowledge after being taught just few instances
(Snell et al., 2017). Based on this intuition, a series of few-shot RC models (Mishra et al., 2017; Gao
et al., 2019a; Soares et al., 2019; Gao et al., 2020) are proposed and can effectively recognize the novel
relations with only a few (e.g., 1 or 5) support instances. Nevertheless, current few-shot RC models
only focus on learning novel relations and ignore a fact that many common relations (i.e., base relations)
are readily available in large datasets. They neglect the existence of large-scale training data for base
relations and still learn the base relations in the low-resource setting (i.e., each base relation is given
only a few support instances), which cannot fully capture or model the features of base relations. To
tackle this limitation of current few-shot RC models, our work in this paper considers a more realistic
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Relation Set Sentence Sample
capital of S1:[London]e1 is the capital of the [U.K]e2

data of birth S2: [Mark Twain]e1 was born in [1835]e2
member of S3:[Newton]e1 served as the president of the

[Royal Society]e2

Query Set Q:[Gerard]e1 was the father of [Gottfried]e2

Table 1: A relation classification example in an open environment.
For the closed-world assumption based RC models, the set of pre-
defined relations (i.e., capital of, data of birth and member of ) is
fixed after model training. [.]e1/e2 denotes the entity name men-
tioned in the corresponding sentence.

Figure 1: Incompatible Feature Embedding Space. Five
relations (3 base and 2 novel relations) with 30 instances
are randomly selected from dataset FewRel (Gao et al.,
2019a) and encoded by prototypical network (Yang et al.,
2018). P991, P6, P176, P921 and P2094 respectively
represent relation successful candidate, head of govern-
ment, manufacturer, main subject and competition class.

setting where the relation learning system is able to enjoy both the ability to learn from large-scale data
for base relations and the flexibility of few-shot learning for novel ones. Specifically, the RC model not
only can learn the base relations from large-scale training data, but also can dynamically recognize the
novel relations with only a few support instances. Research on this subject can be named as incremental
few-shot relation classification.

In both fields of deep supervised learning and few-shot learning, prototypical networks (Snell et al.,
2017) obtain better performance on several benchmarks. They conduct classification by learning the
distance distribution among relations. However, limited by the closed-world assumption, they only focus
on the feature embedding learning for the base relations. When the novel relations come in, the feature
spatial distributions of novel relations might be distorted and become incompatible with those of base
relations. As shown in Figure 1, the base relations are well-distinguished in the feature embedding
spaces. Nevertheless, as the novel relations come in, the feature spatial distributions of novel relations are
extremely wider than those of base ones and even overlap the spatial distributions of the base relations.
It becomes infeasible to conduct classification simultaneously for base and novel relations. To solve this
incompatible feature embedding problem, the prototype attention alignment (ProtoAtt-Alignment) and
triplet loss function are designed in our proposed model. They aim to force the prototypical network to
narrow down the feature spatial distributions of novel relations and meanwhile to enlarge the distances
among different relations in the same embedding space.

In our paper, we propose a two-phase prototypical network model with ProtoAtt-Alignment and triplet
loss for incremental few-shot relation classification. The whole framework is shown in Figure 2. In
the first phase, a deep prototypical network is proposed to learn the feature embedding space of base
relations in a supervised learning manner, following Yang et al. (2018). Each base relation is represented
as the center (base prototype) of its training instances. To dynamically recognize the novel relations, the
novel prototype generator is designed to learn the representations for novel relations (novel prototype)
with only a few support data. Then, an incremental prototypical network with novel prototype generator
is proposed in the second phase and classification is conducted by comparing the distances between
query instance and each prototype (i.e., both the base and novel prototypes).

The main contributions of this paper can be summarized as follows: (1) We explore a problem of
incremental few-shot relation classification and propose a two-phase prototypical network model to dy-
namically recognize the novel relations with a few support data meanwhile without catastrophic forget-
ting. To the best of our knowledge, our work is the first study focusing on incremental few-shot relation
classification. (2) We design a prototype attention alignment and triplet loss to solve the incompatible
feature embedding problem which exists in current prototypical network. (3) Extensive experiments and
visualization analysis are conducted on a real-world dataset to evaluate the effectiveness of our model.
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2 Related Work

Relation classification (RC) is one of the most important techniques in natural language processing (NLP)
and has various applications such as information retrieval (Ercan et al., 2019), question answering (Tong
et al., 2019) and dialogue systems (Ma et al., 2019). Currently, conventional deep supervised (Zeng et
al., 2014; Gormley et al., 2015) and distantly supervised (Mintz et al., 2009; Jiang et al., 2016; Ye and
Ling, 2019a) RC models are widely used and achieve remarkable performance. They are always based
on the closed-world assumption (Fei and Liu, 2016) that the relation expressed in the query instances
must have appeared in the pre-defined relation set. The set of relations which RC models can recognize is
fixed after training. However, it is often violated and limited a lot in many realistic scenarios, especially
in a dynamic or open environment. Novel relations can emerge dynamically in an open-world scenario.

To dynamically expand the fixed relation set, two solutions can be concluded. Firstly, the base and
straightforward method is re-training (Gidaris and Komodakis, 2018). Every time the novel relations
come in, we need to collect training data for novel relations and then train from scratch on the enhanced
training data, aiming to avoid catastrophic forgetting (McCloskey and Cohen, 1989; McClelland et al.,
1995). However, the repeating training process is computationally expensive and time-consuming. Re-
cently, two lifelong learning based RC models (Wang et al., 2019; Han et al., 2020) are proposed to
alleviate the expensive re-training process. Nevertheless, both the solutions still suffer from the lack of
large-scale of training data for novel relations. Without enough training data for novel relations, both
the above two solutions risk overfitting on the recognition of novel relations and even suffer from catas-
trophic forgetting on base relations.

In contrast, humans have the ability to perform even one-shot classification, where only one example
of each new category is given. Based on this intuition, a series of few-shot RC models are proposed.
They can be classified into two categories: meta-learning based models (Santoro et al., 2016; Ravi
and Larochelle, 2016; Mishra et al., 2017) and metric-learning based models (Koch et al., 2015; Snell
et al., 2017; Han et al., 2018; Gao et al., 2019a; Fan et al., 2019; Gao et al., 2019b; Soares et al.,
2019). However, the few-shot RC models only focus on novel relations learning, but ignore a fact that
many common relations are readily available in large datasets. To tackle this problem, we consider a
more realistic setting where the relations learning system can not only learn the base relations from the
large-scale training data, but also dynamically recognize the novel relations with only a few support
examples (termed as incremental few-shot relation classification). Currently, several related works (Qi et
al., 2018; Gidaris and Komodakis, 2018; Xiang et al., 2019; Ren et al., 2019) are proposed in computer
vision field and they concentrate on image classification task. Different from images, the text is more
diverse and noisy. It is hard to directly generalize to NLP applications (Gao et al., 2019a). In this paper,
we propose a two-phase prototypical network model for incremental few-shot relation classification.
Extensive experiments are conducted to evaluate the effectiveness of our proposed model.

3 Model

To address the problem of incremental few-shot relation classification, we propose a two-phase prototyp-
ical network model with the prototype attention alignment and an auxiliary triplet loss (IncreProtoNet).
In a dynamic and open environment, novel relations can emerge in test stage. However, current conven-
tional supervised RC models are based on the closed-world assumption and neglect the emergence of
novel relations. Although current few-shot RC models achieve remarkable performances on recogniz-
ing novel relations with a few support instances, they ignore a fact that the common relations (i.e., base
relations) are readily available in large datasets. To simultaneously learn the base relations with large
training data and dynamically recognize the novel relations with only a few support data, a two-phase
IncreProtoNet is proposed, as shown in Figure 2. The first phase, named deep prototypical network,
is designed to pre-train a base model for base relations in a deep supervised manner. The second phase,
named incremental prototypical network, is proposed to dynamically recognize the novel relations
with only a few support instances meanwhile do not forget the base relations.
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Figure 2: The overview of our proposed framework. Prototypical Network is denoted as ProtoNet

3.1 Problem Definitions and Notations

The incremental few-shot relation classification can be defined as a task as follows. We assume there
exist a large dataset Dtrain = ∪Nbase

b=1 {Ib,i = (xb,i, hb,i, tb,i, rb)}Kb
i=1 of Nbase base relations, where Kb

is the number of training instances of rb base relation and Ib,i means entity pair (hb,i, tb,i) mentioned in
sentence xb,i which expresses the semantic relation rb. Using this large training data of base relations,
our work aims to effectively learn the base relations and meanwhile to dynamically recognize the novel
relations with only a few (e.g., 1 or 5) support instances. Therefore, given a support set S for Nnovel

novel relations, the model can classify the entity pair (h, t) mentioned in query instance q into the most
possible relation ri ∈ Rbase ∪ Rnovel, where Rbase = {rb}Nbase

b=1 and Rnovel = {r
′
n}

Nnovel
n=1 . The support

set S can be defined as follows:

S = ∪Nnovel
n=1 {I

′
n,i}

K
′
n

i=1 (1)

, where K
′
n is the number of support instances of novel relation r

′
n and I

′
n,i is its i-th support instance.

3.2 Feature Extractor

3.2.1 Token Embedding Layer

Given an instance x = {w1, w2, . . . , wL}, the token embedding layer aims to transform each input word
token wi into a real-valued vector vi ∈ Rd (1 ≤ i ≤ L). Following Gao et al. (2019a), the vector vi
consists of two parts: word embedding vwi ∈ Rdw and position embedding vposi ∈ R2×dp . We can
obtain token representation vi by concatenating word embedding and position embedding, as follows:

vi = [vwi ;vposi ];vi ∈ Rd, d = dw + 2× dp (2)

Finally, each instance can be transformed into an instance matrix S ∈ RL×d, where S =
{v1,v2, . . . ,vL} and vi ∈ Rd.

3.2.2 Instance Encoder Layer

The instance encoder layer is used to map an instance x into a low-dimensional vector x using a compo-
sitional function f(S) over the token embedding sequence S.

x = fφ(S) (3)

where φ is the learnable parameters of compositional function f(·). In our proposed model, we firstly
employ convolutional neural networks (CNNs) (Kim, 2014) to capture the local features of instance. The
instance matrix S is input into CNNs with dh filters whose window size iswin. It outputs another hidden
embedding matrix H ∈ RL×dh . Then, a max-pooling operation is applied over the matrix H to obtain
the final instance embedding x ∈ Rdh .
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3.3 Deep Prototypical Network
Prototypical network (Snell et al., 2017; Yang et al., 2018) obtains remarkable performance and enjoys
better robustness on several benchmarks. It conducts classification by measuring the distance distribu-
tion among relations. In the first phase, following Yang et al. (2018), deep prototypical network with
prototype loss is used to train a base model in a deep supervised manner. The goal of this phase is to
learn both a good feature extractor and a good base classifier. Given a query instance q from Dtrain, the
query instance representation xq can be obtained by the feature extractor. Then, the probability of query
instance q belonging to relation ri ∈ Rbase can be calculated as follows:

pφ(y = ri|q) =
exp(−d(xq,µi))∑|Rbase|

j=1 exp(−d(xq,µj))
(4)

, where µi ∈ Rdh denotes a learnable weight vector of relation ri ∈ Rbase and d(·, ·) is the Euclidean
distance function for two given vectors. The parameters of the deep prototypical network are learned in
this phase and will be freezed after pre-training. Then, we can obtain the prototypes for base relations
(base prototypes) by averaging all the available training instance embeddings. They can be denoted as
Pbase = {p1,p2, . . . ,pNbase

}.

3.4 Incremental Few-shot Prototypical Network
In order to dynamically recognize the novel relations with only a few support samples, the incremental
prototypical network is proposed to learn the features of novel relations and measure their prototypes
(novel prototypes). Then, classification can be conducted by measuring the distances between query
instance and all the relations’ prototypes (i.e., base prototypes and novel prototypes). The second phase
mainly consists of two components, including Novel Prototype Generator which measures the novel
prototypes with a MetaCNN encoder and Merged Prototypical Network which merges the base and
novel features with a prototype attention alignment.

3.4.1 Novel Prototype Generator

Given a support set S = ∪Nnovel
n=1 {I

′
n,i}

K
′
n

i=1, each support instance I
′
n,i is encoded by the Token Embedding

Layer in freezed Feature Extractor as a word embedding matrix Sn,i.
MetaCNN Encoder: As shown in Figure 1, the feature embedding space is distorted a lot when the

novel relations come in, which would cause serious classification errors on both base and novel relations.
Instead of using the freezed Feature Extractor, we build an another MetaCNN encoder to capture the
features of novel relations. The network structure is the same as the Instance Encoder Layer using in
the base model. Given a word embedding matrix Sn,i, the MetaCNN encoder can obtain the support
instance embedding x

′
n,i.

Feature Averaging Prototype: For each novel relation r
′
n ∈ Rnovel with K

′
n support instances, we

can obtain the prototype of novel relation r
′
n by p

′
n = 1

K′n

∑K
′
n

i=1 x
′
n,i. Then, the novel prototypes can be

denoted as Pnovel = {p
′
1,p

′
2, . . . ,p

′
Nnovel

}.

3.4.2 Merged Prototypical Network with Prototype Attention Alignment
The base and novel prototypes are merged and denoted as Pall = Pbase∪Pnovel. Given a query instance
q, two instance embedding xbaseq and xnovelq can be obtained respectively by Feature Extractor and
MetaCNN Encoder. To merge the base and novel features, prototype attention alignment is designed to
measure the important degree of base features and novel ones. The merged query instance embedding
can be calculated as follows:

xq = ωbx
base
q + ωnx

novel
q (5)

, where both ωb and ωn are scale weight values and ωb + ωn = 1.0. The weight ωb and ωn can be
measured by the prototype attention alignment as follows:

ωb =
exp(−d(xbaseq ,vbase))

exp(−d(xbaseq ,vbase)) + exp(−d(xnovelq ,vnovel))
and ωn = 1.0− ωb (6)
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, where vbase and vnovel respectively denotes the base and novel feature representation. They are respec-
tively calculated as follows:

vbase =

Nbase∑
i=1

αipi and vnovel =
Nnovel∑
i=1

βip
′
i (7)

, where αi denotes the weight value of i-th base prototype and βi denotes the weight value of i-th novel
prototype. The weight value αi and βi is calculated as follows:

αi =
exp(−d(xbaseq ,pi))∑Nbase

j=1 exp(−d(xbaseq ,pj))
and βi =

exp(−d(xnovelq ,p
′
i))∑Nnovel

j=1 exp(−d(xnovelq ,p
′
j))

(8)

Finally, the probability of query instance q belonging to relation r ∈ Rbase ∪Rnovel can be measured as
follows:

pθ(r|q) =
exp(−d(xq,palli ))∑Nbase+Nnovel

j=1 exp(−d(xq,pallj ))
(9)

where palli denotes the i-th prototype in Pall.

3.5 Triplet Loss for IncreProtoNet
The performance of prototypical network highly depends on the spacial distributions of relations in
embedding space. To improve the robustness of prototypical network and further solve the incompatible
feature embedding problem, the triplet loss function is adopted in our model. Specifically, the target of
triplet loss is to force the prototypical network to narrow down the feature spatial distribution of novel
relations and meanwhile to enlarge the distances among different relations. Following Fan et al. (2019),
the triplet loss function is designed as follows:

£triplet =
M∑
i=1

Nnovel∑
k=1

max(0, δ + d(g(aki ), g(p
k
i ))− d(g(aki ), g(nki ))) (10)

, where M is the total number of training episodes and (aki , p
k
i , n

k
i ) is a triplet consists of the anchor, the

positive and the negative instances and δ is a hyper-parameter. Note that the anchor is a virtual instance
and denotes the novel prototype.

Finally, the loss £ in the second phase is a trade-off between the softmax cross-entropy loss £softmax

of incremental prototypical network and the triplet loss £triplet by a hyper-parameter λ:

£ = £softmax + λ ∗£triplet (11)

4 Experiment

4.1 Experiment Settings
We conduct experiments1 on a large-scale public dataset (i.e., FewRel) to evaluate the effectiveness of our
proposed model. Two kinds of pretrained word embedding methods, namely Glove (Pennington et al.,
2014) and language model BERT (Devlin et al., 2018), can be used to initialize word embeddings in our
model and are finetuned during the training stage. The out-of-vocabulary (OOV) words are initialized as
an uniform distribution with range [−0.01, 0.01]. For the triplet loss, the hyper-parameter δ is set as 5.0
and λ is set as 1.0. The stochastic gradient descent (SGD) optimizer with initial learning rate of 0.01 is
used to optimize the model parameters.

In our experiments, we evaluate our proposed model in two incremental few-shot settings (i.e., Nbase

base relations and 5 novel relations with 1-shot or 5-shot learning, where Nbase is 54 for FewRel). In the
first phase, the deep prototypical network (i.e., base model) is trained in a supervised learning manner
and is freezed after training. Specifically, the target of the first phase is to learn the parameters φ of

1Code is available at https://github.com/betterAndTogether/IncreProtoNet
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Models 1-shot learning 5-shot learning
Base Novel Both Base Novel Both

Siamese 49.42 ± 0.06 35.06 ± 0.26 48.20 ± 0.16 60.61 ± 0.04 34.94 ± 0.18 58.44 ± 0.13
Proto 43.20 ± 0.12 39.86 ± 0.26 42.91 ± 0.22 66.74 ± 0.05 57.33 ± 0.15 65.94 ± 0.11

LM-ProtoNet 46.17 ± 0.09 42.20 ± 0.11 45.84 ± 0.08 59.46 ± 0.21 48.68 ± 0.11 58.55 ± 0.17
HATT Proto 51.58 ± 0.11 45.16 ± 0.18 51.03 ± 0.15 67.77 ± 0.13 61.12 ± 0.09 67.20 ± 0.08

MLMAN 53.40 ± 0.15 45.01 ± 0.11 52.69 ± 0.13 68.40 ± 0.15 55.38 ± 0.08 67.30 ± 0.11
Proto(BERT) 69.01 ± 0.07 52.38 ± 0.20 67.60 ± 0.13 75.59 ± 0.04 62.59 ± 0.17 74.49 ± 0.16
BERT-PAIR 76.03 ± 0.05 58.29 ± 0.13 75.30 ± 0.11 80.01 ± 0.03 64.34 ± 0.14 78.68 ± 0.12

ProtoNet(Increment) 75.63 ± 0.04 18.44 ± 0.02 70.78 ± 0.03 75.07 ± 0.03 47.11 ± 0.04 72.70 ± 0.02
Imprint 62.62 ± 0.13 16.79 ± 0.34 58.73 ± 0.27 67.72 ± 0.09 16.49 ± 0.31 63.38 ± 0.25
LwoF 67.92 ± 0.14 40.87 ± 0.22 65.62 ± 0.15 65.77 ± 0.11 65.23 ± 0.21 65.73 ± 0.15

AttractorNet 66.48 ± 0.19 5.32 ± 0.25 61.29 ± 0.23 68.26 ± 0.22 6.45 ± 0.26 62.78 ± 0.24

IncreProtoNet 70.96 ± 0.21 48.38 ± 0.11 69.36 ± 0.15 72.54 ± 0.16 61.57 ± 0.11 71.54 ± 0.13
BERT-IncreProtoNet 82.10 ± 0.04 60.15 ± 0.11 80.65 ± 0.10 84.64 ± 0.04 65.77 ± 0.09 82.26 ± 0.08

Table 2: Average classification accuracy (%) on dataset FewRel. The Novel columns report the average
5-way 1-shot or 5-shot classification accuracy of novel relations; the Base and Both columns respectively
report the average classification accuracy of base relations and both type of relations. The above results
are calculated by sampling 2000 tasks each with 54 base relations and 5 novel relations. Each relation is
randomly sampled 5 query instances.

the feature extractor and the prototypes of base relations Pbase. In the second phase, the incremental
prototypical network is trained by iteratively sampling few-shot episodes and tries to learn the meta-
parameters, following Gidaris and Komodakis (2018).

4.2 Datasets and Data Settings
In our experiments, we use accuracy as the metric. To evaluate the effectiveness of our proposed model,
extensive experiments are conducted on a large-scale few-shot RC dataset FewRel (Gao et al., 2019a).
The dataset totally contains 80 relations and each relation has 700 instances. To satisfy our experimen-
tal settings, we split the dataset into three parts: training set which consists of 54 relations (i.e., base
relations Rbase) each with 550 instances; validation set which consists of 54 relations (i.e., base rela-
tions Rbase) each with 50 instances and 10 relations (i.e., novel relations in validation stage) each with
700 instances; and testing set which consists of 54 relations (i.e., base relations Rbase) each with 100
instances and 16 relations (i.e., novel relations Rnovel in testing stage) each with 700 instances. There
are no-overlapping instances between training, validation and testing dataset.

4.3 Result Analysis
In our experiments, we compare the performance of our proposed model with two groups of models:
several few-shot RC models and four incremental few-shot learning models which designed for CV
applications as follows:

1. Few-shot Learning: We select several few-shot RC models (which can be adapted into the incre-
mental few-shot scenario) as baselines. To adapt them into the incremental few-shot setting, we
train the few-shot RC models on the training set of base relations. Then, both the base and novel re-
lations are recognized with a few support instances in test stage. They are listed as follows: Siamese
(Koch et al., 2015), Proto (Han et al., 2018), LM-ProtoNet (Fan et al., 2019), HATT Proto (Gao et
al., 2019a), MLMAN (Ye and Ling, 2019b), Proto(BERT), BERT-PAIR (Gao et al., 2019b).

2. Incremental Few-shot Learning:

• ProtoNet(incremental) (Snell et al., 2017): prototypical network is adapted to incremental
few-shot settings. Each base relation is represented as the average embedding (base prototype)
over its all training instances. At test stage, the novel relations are also represented as the
average embedding (novel prototypes) over a few support instances. Finally, classification is
conducted by comparing the distances between the query instance and each relation prototype.
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Models 1-shot learning 5-shot learning
Base Novel Both Base Novel Both

DeepProtoNet 71.38 ± 0.16 22.91 ± 0.31 67.27 ± 0.28 71.44 ± 0.18 34.10 ± 0.33 68.27 ± 0.24
IncreProtoNet† 71.81 ± 0.11 26.46 ± 0.21 67.97 ± 0.17 73.05 ± 0.09 50.56 ± 0.17 71.14 ± 0.13
IncreProtoNet‡ 69.07 ± 0.22 44.15 ± 0.31 66.88 ± 0.26 71.41 ± 0.12 55.10 ± 0.13 70.03 ± 0.11
IncreProtoNet 70.96 ± 0.21 48.38 ± 0.11 69.36 ± 0.15 72.54 ± 0.16 61.57 ± 0.11 71.54 ± 0.13

BERT-DeepProtoNet 86.17 ± 0.07 6.58 ± 0.15 79.61 ± 0.10 86.30 ± 0.06 10.06 ± 0.13 79.84 ± 0.09
BERT-IncreProtoNet† 81.33 ± 0.16 50.40 ± 0.11 78.71 ± 0.13 76.63 ± 0.11 65.51 ± 0.09 75.77 ± 0.10
BERT-IncreProtoNet‡ 82.64 ± 0.11 58.08 ± 0.15 80.29 ± 0.13 82.64 ± 0.09 63.99 ± 0.12 81.07 ± 0.08
BERT-IncreProtoNet 82.10 ± 0.04 60.15 ± 0.11 80.65 ± 0.10 84.64 ± 0.04 65.77 ± 0.09 82.26 ± 0.08

Table 3: Ablation experiments (%) on dataset FewRel; DeepProtoNet denotes the base model (Yang et
al., 2018) which is directly used to recognize both the base and novel relations; † indicates that our model
IncreProtoNet without prototype attention alignment; and ‡ indicates that our model IncreProtoNet with-
out triplet loss function.

• Imprint (Qi et al., 2018): the base classes representations are learned through the supervised
pre-training and the novel classes are represented simply by prototypical averaging. Then,
classification is conducted over the fully connection layer by concatenating the base and novel
classes representations.
• LwoF (Gidaris and Komodakis, 2018): Similar to Imprint, a two-stage incremental few-

shot learning algorithm with a class-wise attention mechanism is designed to learn better
classification-weight values for both base and novel classes.
• AttractorNet (Ren et al., 2019): Inspired by the attractor networks (Zemel and Mozer, 2001),

the attention attractor network model which regularizes the learning of novel classes is de-
signed for incremental few-shot learning on image classification task.

4.3.1 Comparison with Related Models
To demonstrate the effectiveness of our model in the incremental few-shot scenario, we compare our
proposed model with two groups of related works (i.e., few-shot RC models and incremental few-shot
learning models designed in CV). To adapt the few-shot models to the incremental few-shot settings,
both the base and novel relations are recognized in the few-shot learning manner. Recently, a series of
works have demonstrated the effectiveness of few-shot learning technique on relation classification task.
Nevertheless, they only focus on the novel relation learning and ignore a fact that the common relations
(i.e., base relations) have been readily available in large datasets. Specifically, the large-scale training
data of base relations is neglected and each base relation is still recognized with only a few support
instances. As shown in Table 2, our proposed model achieves higher accuracy by a significant margin on
the recognition of base relations. Meanwhile, the novel relations can be also effectively recognized and
our model even obtains better performance than current few-shot RC models. Through the comparison
with current few-shot RC models, it can demonstrate that our proposed model can not only effectively
recognize the base relations, but also dynamically learn the novel relations with only a few support
instances.

For the second related works, four incremental few-shot learning models proposed on computer vision
field are also implemented and adapted to the relation classification task as the baselines. Different from
images, text is more diverse and noise (Gao et al., 2019a). Current incremental few-shot learning models
focusing on image classification task are hard to generalize to NLP tasks. From the experimental results
shown in Table 2, our proposed model achieves better recognition performance by a significant margin
on all experimental settings. Specifically, the model proto(increment) encodes the novel relations simply
by the pre-trained prototypical network (i.e., base model) and suffers from the incompatible feature
embedding problem. Comparing with proto(increment), our proposed model obtains higher accuracy by
a large margin on the recognition of novel relations. To some extent, we can conclude that our proposed
model can effectively learn compatible feature embedding spaces when the novel relations incrementally
come in. The intuitive and specific visualization analysis are given in the final section.
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(a) Without ProtoAtt-Alignment (b) Without Triplet Loss (c) IncreProtoNet

Figure 3: Visualization Analysis; Five relations (i.e., 3 base relations and 2 novel relations) with 30
instances are randomly selected from real-world dataset FewRel. They are encoded by our proposed
model in three settings and mapped into the 2-dimensional embedding space using PCA algorithm.

4.3.2 Ablation Studies
As shown in Table 3, the ablation experiments on prototype attention alignment and triplet loss are con-
ducted. The target of the above two components (i.e., ProtoAtt-Alignment and Triplet loss) is to learn the
compatible and adaptive embedding spaces when novel relations come in. From the experimental results,
both the ProtoAtt-Alignment and Triplet loss can significantly improve the recognition performance of
novel relations and maintain comparable recognition performances of base relations. Especially, the base
model (i.e., deep prototypical network) achieves better recognition performance of base relations than
our model in some experimental settings. However, it seriously suffers from the incompatible feature
embedding problem when novel relations are directly added into the base (initial) embedding space, as
shown in Figure 1. Thus, the base model deepProtoNet gets the lowest accuracy on the recognition of
novel relations in all experimental settings. Through the ablation studies, we can conclude that prototype
attention alignment and triplet loss can effectively force the prototypical network to learn the compatible
feature embedding space in the incremental few-shot scenario.

4.3.3 Visualization Analysis
To specifically and intuitively explain the effectiveness of our proposed model, we randomly select 30
instances from the corresponding relations (i.e., 3 base relations and 2 novel relations) in dataset FewRel
and encode them into the hidden embeddings after the model training. Then, we map them into 2-
dimensional points using Principal Component Analysis (PCA) in the same feature embedding space. As
shown in Figure 1, current prototypical networks suffer from the incompatible feature embedding prob-
lem when the novel relations are directly added into the base embedding space. To solve this problem,
prototype attention alignment is proposed to learn the compatible or adaptive feature embedding space
through aligning and combining the novel and base relations features. Specifically, the feature spatial
distribution of both novel and base relations become intra-relation compact and inter-relation separable
Comparing with Figure 3(a) and 3(c), it can evaluate the effectiveness of prototype attention alignment.
The feature spatial distribution of both novel and base relations can be effectively distinguished. What’s
more, the triplet loss is able to further force the prototypical network to enlarge the distances among
relations and shorten the distances within the same relation, as shown in Figure 3(b) and 3(c). It is also
beneficial for our proposed model to avoid the catastrophic forgetting on base relations.

5 Conclusion

In this paper, we propose a two-phase prototypical network model for incremental few-shot relation clas-
sification. Current conventional supervised RC models are always based on the closed-world assumption
that the relations expressed in query instances must have appeared in the pre-defined relations. However,
novel relations often emerge in the dynamic or open-world environment. Although current few-shot RC
models effectively recognize the novel relations with only a few support instances, they ignore a fact that
the common relations (i.e., base relations) are readily available in large datasets. To simultaneously learn
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the base relations with large-scale training data and the novel relations with a few support data, an incre-
mental few-shot relations learning model is proposed in our paper. The extensive experimental results
and visualization analysis show that our proposed model can effectively recognize the novel relations
with a few support data and maintain high recognition accuracy on base relations.

Acknowledgement

This work was supported by the Fundamental Research Funds for the Central Universities, SCUT
(No.2017ZD048, D2182480), the National Key Research and Development Program of China, the Sci-
ence and Technology Programs of Guangzhou (No.201704030076, 201802010027, 201902010046), Na-
tional Natural Science Foundation of China (62076100) and the Hong Kong Research Grants Council
(project no. C1031-18G).

References
Yanping Chen, Kai Wang, Weizhe Yang, Yongbin Qing, Ruizhang Huang, and Ping Chen. 2020. A multi-channel

deep neural network for relation extraction. IEEE Access, 8:13195–13203.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert: Pre-training of deep bidirec-
tional transformers for language understanding. arXiv preprint arXiv:1810.04805.

Gonenc Ercan, Shady Elbassuoni, and Katja Hose. 2019. Retrieving textual evidence for knowledge graph facts.
In European Semantic Web Conference, pages 52–67. Springer.

Miao Fan, Yeqi Bai, Mingming Sun, and Ping Li. 2019. Large margin prototypical network for few-shot re-
lation classification with fine-grained features. In Proceedings of the 28th ACM International Conference on
Information and Knowledge Management, pages 2353–2356. ACM.

Geli Fei and Bing Liu. 2016. Breaking the closed world assumption in text classification. In Proceedings of
the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, pages 506–514.

Tianyu Gao, Xu Han, Zhiyuan Liu, and Maosong Sun. 2019a. Hybrid attention-based prototypical networks
for noisy few-shot relation classification. In Proceedings of the Thirty-Second AAAI Conference on Artificial
Intelligence,(AAAI-19), New York, USA.

Tianyu Gao, Xu Han, Hao Zhu, Zhiyuan Liu, Peng Li, Maosong Sun, and Jie Zhou. 2019b. Fewrel 2.0: Towards
more challenging few-shot relation classification. arXiv preprint arXiv:1910.07124.

Tianyu Gao, Xu Han, Ruobing Xie, Zhiyuan Liu, Fen Lin, Leyu Lin, and Maosong Sun. 2020. Neural snowball
for few-shot relation learning. In AAAI, pages 7772–7779.

Spyros Gidaris and Nikos Komodakis. 2018. Dynamic few-shot visual learning without forgetting. 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 4367–4375.

Matthew R Gormley, Mo Yu, and Mark Dredze. 2015. Improved relation extraction with feature-rich composi-
tional embedding models. arXiv preprint arXiv:1505.02419.

Xu Han, Hao Zhu, Pengfei Yu, Ziyun Wang, Yuan Yao, Zhiyuan Liu, and Maosong Sun. 2018. Fewrel: A
large-scale supervised few-shot relation classification dataset with state-of-the-art evaluation. arXiv preprint
arXiv:1810.10147.

Xu Han, Yi Dai, Tianyu Gao, Yankai Lin, Zhiyuan Liu, Peng Li, Maosong Sun, and Jie Zhou. 2020. Continual re-
lation learning via episodic memory activation and reconsolidation. In Proceedings of the 58th Annual Meeting
of the Association for Computational Linguistics, pages 6429–6440, Online, July. Association for Computa-
tional Linguistics.

Xiaotian Jiang, Quan Wang, Peng Li, and Bin Wang. 2016. Relation extraction with multi-instance multi-label
convolutional neural networks. In Proceedings of COLING 2016, the 26th International Conference on Com-
putational Linguistics: Technical Papers, pages 1471–1480.

Yoon Kim. 2014. Convolutional neural networks for sentence classification. pages 1746–1751.



1628

Gregory Koch, Richard Zemel, and Ruslan Salakhutdinov. 2015. Siamese neural networks for one-shot image
recognition. In ICML deep learning workshop, volume 2. Lille.

Mingyu Derek Ma, Kevin Bowden, Jiaqi Wu, Wen Cui, and Marilyn Walker. 2019. Implicit discourse relation
identification for open-domain dialogues. In Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 666–672.

James L McClelland, Bruce L McNaughton, and Randall C O’Reilly. 1995. Why there are complementary
learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist
models of learning and memory. Psychological review, 102(3):419.

Michael McCloskey and Neal J Cohen. 1989. Catastrophic interference in connectionist networks: The sequential
learning problem. In Psychology of learning and motivation, volume 24, pages 109–165. Elsevier.

Mike Mintz, Steven Bills, Rion Snow, and Dan Jurafsky. 2009. Distant supervision for relation extraction without
labeled data. In Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th
International Joint Conference on Natural Language Processing of the AFNLP: Volume 2-Volume 2, pages
1003–1011. Association for Computational Linguistics.

Nikhil Mishra, Mostafa Rohaninejad, Xi Chen, and Pieter Abbeel. 2017. A simple neural attentive meta-learner.
In ICLR.

Jeffrey Pennington, Richard Socher, and Christopher Manning. 2014. Glove: Global vectors for word represen-
tation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP),
pages 1532–1543.

Hang Qi, Matthew Brown, and David G Lowe. 2018. Low-shot learning with imprinted weights. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pages 5822–5830.

Sachin Ravi and Hugo Larochelle. 2016. Optimization as a model for few-shot learning.

Mengye Ren, Renjie Liao, Ethan Fetaya, and Richard Zemel. 2019. Incremental few-shot learning with attention
attractor networks. In Advances in Neural Information Processing Systems, pages 5276–5286.

Adam Santoro, Sergey Bartunov, Matthew Botvinick, Daan Wierstra, and Timothy Lillicrap. 2016. Meta-learning
with memory-augmented neural networks. In International conference on machine learning, pages 1842–1850.

Jake Snell, Kevin Swersky, and Richard Zemel. 2017. Prototypical networks for few-shot learning. In Advances
in Neural Information Processing Systems, pages 4077–4087.

Livio Baldini Soares, Nicholas FitzGerald, Jeffrey Ling, and Tom Kwiatkowski. 2019. Matching the blanks:
Distributional similarity for relation learning. In Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 2895–2905.

Peihao Tong, Qifan Zhang, and Junjie Yao. 2019. Leveraging domain context for question answering over knowl-
edge graph. Data Science and Engineering, 4(4):323–335.

Hong Wang, Wenhan Xiong, Mo Yu, Xiaoxiao Guo, Shiyu Chang, and William Yang Wang. 2019. Sentence
embedding alignment for lifelong relation extraction. arXiv preprint arXiv:1903.02588.

Liuyu Xiang, Xiaoming Jin, Guiguang Ding, Jungong Han, and Leida Li. 2019. Incremental few-shot learning
for pedestrian attribute recognition. In Proceedings of the 28th International Joint Conference on Artificial
Intelligence, pages 3912–3918. AAAI Press.

Hong-Ming Yang, Xu-Yao Zhang, Fei Yin, and Cheng-Lin Liu. 2018. Robust classification with convolutional
prototype learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages
3474–3482.

Zhi-Xiu Ye and Zhen-Hua Ling. 2019a. Distant supervision relation extraction with intra-bag and inter-bag
attentions. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 2810–2819.

Zhi-Xiu Ye and Zhen-Hua Ling. 2019b. Multi-level matching and aggregation network for few-shot relation
classification. arXiv preprint arXiv:1906.06678.

Richard S Zemel and Michael C Mozer. 2001. Localist attractor networks. Neural Computation, 13(5):1045–
1064.



1629

Daojian Zeng, Kang Liu, Siwei Lai, Guangyou Zhou, and Jun Zhao. 2014. Relation classification via convolu-
tional deep neural network. pages 2335–2344.

Ningyu Zhang, Shumin Deng, Zhanlin Sun, Guanying Wang, Xi Chen, Wei Zhang, and Huajun Chen. 2019. Long-
tail relation extraction via knowledge graph embeddings and graph convolution networks. In Proceedings of the
2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short Papers), pages 3016–3025.


