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Abstract

This paper studies a novel model that sim-
plifies the disambiguation of connectives for
explicit discourse relations. We use a neural
approach that integrates contextualized word
embeddings and predicts whether a connec-
tive candidate is part of a discourse relation
or not. We study the influence of those con-
text specific-embeddings. Further, we show the
benefit of training the tasks of connective dis-
ambiguation and sense classification together
at the same time. The success of our approach
is supported by state-of-the-art results.

1 Introduction

Coherence is crucial for humans to be able to inter-
pret text. The area of discourse parsing models this
by identifying certain phrases (arguments) within
a text and using discourse relations to unfold their
underlying connections. These discourse relations
and their understanding are important for tasks such
as machine translation (Sim Smith, 2017), abstrac-
tive summarization (Wu and Hu, 2018), and text
simplification (Zhong et al., 2020). A subset of
these relations is signaled by specific words, so-
called discourse connectives (or discourse markers
or cues), and thus referred to as explicit discourse
relations. However, such cues can be ambiguous,
as they may signal more than one relation type or
may not always function as a relation indicator. Two
challenges arise! —first, distinguishing connectives
from words with mere sentential meaning:

1. Mr. Perkins believes, however, that the market
could be stabilized.

2. “The 1987 crash was a false alarm how-
ever you view it,” says university of Chicago
economist.

'Examples 1-2 are from PDTB (see Section 2); examples
3-6 are artificially constructed; senses follow PDTB2 style.
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Here, example 1 shows a discourse relation, while
example 2 uses ‘however’ in its sentential reading.
The second challenge consists in classifying a con-
nective’s sense (described in detail in Section 2):

3. She owns a bike, while her brother drives a

car. (Comparison.Contrast)

. You should take the deal or even try to nego-
tiate this price down. (Expansion.Alternative)

. If things work out, then everybody will be
happy. (Contingency.Condition)

While it is raining outside, I clean the dishes.
(Temporal.Synchronous)

Shallow discourse parsing (SDP) is the area that
builds models to uncover such discourse structures
within texts. SDP consists of the main tasks of iden-
tifying connectives, demarcating their arguments,
assigning senses to them, and finding the senses
of so-called implicit relations (which hold between
adjacent text spans without a lexical signal being
present). In this work, we focus in particular on
the binary connective disambiguation of explicit
discourse relations and, further, integrate explicit
sense prediction into our model, as those two tasks
are highly related.

Word embeddings provide dense token represen-
tations in a low-dimensional vector space pretrained
on large unannotated text corpora. First, we use fast-
Text (Bojanowski et al., 2017), which is based on
the skip-gram model (Mikolov et al., 2013) and in-
tegrates character n-grams into its representation.
Second, we use GloVe (Pennington et al., 2014); as
opposed to fastText, those embeddings were calcu-
lated through co-occurrence statistics rather than
trained by a neural network. Recently, models were
introduced that provide contextualized word embed-
dings (Peters et al., 2018; Devlin et al., 2019) on
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demand and thus tackle the problem of identical rep-
resentations for homonymous words with different
senses, which had been indistinguishable in older
models. For our experiments, we use BERT (Devlin
et al., 2019), which was successful in many areas
of NLP (Liu and Lapata, 2019; Liu et al., 2019).

In this work, we present a novel approach to
identifying explicit relations in shallow discourse
parsing. We introduce a simple yet powerful model
that outperforms previous research on the binary
disambiguation of connective candidates. Further-
more, we adopt connective sense classification as
an auxiliary task to improve performance and gen-
eralization capabilities and study the benefits of
jointly training the auxiliary task in addition to
the main task. This is because, in various cases,
training neural models on multiple related tasks
has shown beneficial for the learned representation
(Caruana, 1993), as it introduces inductive bias and,
thereby, reduces the possible hypothesis space (Bax-
ter, 2000). Specifically, the work of Collobert et al.
(2011) has pointed out the advantages of multitask
learning on NLP tasks. We compare our results with
state-of-the-art SDP components that took part at
the CoNLL Shared Task in 2016.> The contribu-
tions of this paper are as follows:

1. We design a simple neural architecture that
eliminates the need for hand-engineered fea-
tures. To the best of our knowledge, this work
is the first to provide state-of-the-art perfor-
mance on word-embedding-based connective
disambiguation.

We present a novel approach that successfully
combines the two tasks of connective disam-
biguation and explicit sense classification into
one single model. In contrast to previous work,
we introduce a more sensitive measure and,
with its help, demonstrate improved stability
of the jointly trained model.

In the following, Section 2 describes the corpus
for the experiments; Section 3 explains our method.
The experiments and results are presented in Sec-
tion 4 and Section 5; Section 6 discusses relevant
related work, followed by conclusions in Section 7.

2 Penn Discourse Treebank

Shallow discourse parsing is a challenging task that
was promoted by the development of the second

2We are not aware of more recent results.
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Coarse Class Absolute Relative
NoConn 34174 69.90
Expansion 5007 10.24
Comparison 4382 8.96
Temporal 2752 5.63
Contingency 2578 5.27
Fine Class

NoConn 34174 70.44
Expansion.Conjunction 4323 8.91
Comparison.Contrast 2956 6.09
Contingency.Condition 1147 2.36
Temporal.Sync 1133 2.34
Comparison.Concession 1079 2.22
Contingency.Cause.Reason 943 1.94
Temporal.Async.Succession 842 1.74
Temporal.Async.Precedence 770 1.59
Contingency.Cause.Result 487 1.00
Expansion.Instantiation 236 0.49
Expansion.Alternative 195 0.40
Expansion.Restatement 121 0.25
Expansion.Alternative.Chosen 95 0.20
Expansion.Exception 13 0.03

Table 1: Class distribution of the training data.

version of the Penn Discourse Treebank (PDTB?2)
(Prasad et al., 2008). This corpus provides about
43,000 annotated discourse relations, of which
roughly 18,000 are signalled by explicit discourse
connectives. Those relations are further annotated
with a three-level sense hierarchy (one or two senses
per relation). All discourse relations consist of two
arguments and are associated with one of various
types; the focus of our work is on relations of the
explicit type.

The Shared Tasks at CoNLL 2015 and 2016 (Xue
etal.,2015,2016) used PDTB2 with minor changes.
Successful systems were Wang et al. (2015); Wang
and Lan (2016); Oepen et al. (2016). They largely
follow a pipeline architecture (Lin et al., 2014),
which consists of successive tasks of connective
identification, argument labeling, and sense classi-
fication for both explicit and implicit relations.

Recently, PDTB3 (Prasad et al., 2018) was pub-
lished, which extends the previous work with more
available relations and corrects several former an-
notations. The authors also adjusted the relations’
sense labels for a more balanced class distribution.
For the sake of comparison with previous work on
SDP, we stick to the PDTB2 corpus and assume to
achieve similar results with PDTB3.

Table 1 summarizes the distribution regarding
sense classes, where we denote candidate words
with sentential reading by NoConn. In both settings,
NoConn dominates other classes and, thus, serves



as the majority baseline. The first setting shows the
four coarse sense classes provided by PDTB2. The
second setting describes the fine senses as defined in
the Shared Task. In contrast to the first setting, the
distribution slightly changes, as rare training sam-
ples were removed or combined with other classes.
Although the exact numbers for NoConn are the
same in both settings, the ratios are different, which
can be explained by the small modifications made
to PDTB2 in the competitions.

3 Method

This work introduces a first, simple neural architec-
ture for shallow discourse connective disambigua-
tion. The system builds upon previous observations
that a word’s context could be used as a strong in-
dicator for the presence of a discourse relation (Lin
et al., 2014).3 Our work investigates the limitations
of knowledge free approaches and introduces a sim-
ple yet flexible model without domain knowledge.
We assume that word embeddings contain infor-
mation about the discourse that can be used for the
disambiguation task. We study standard noncontex-
tualized embeddings (in particular, GloVe embed-
dings and Wikipedia-based fastText embeddings)
and compare those to the recently developed contex-
tualized embeddings (represented by BERT). We
first hypothesize that contextualized embeddings
yield better results than their noncontextualized
counterpart. Second, we expect the context span
to influence the model’s performance, as the con-
text may indicate a word’s function more clearly.
In addition, we propose a second model based on
the first one, which successfully combines connec-
tive disambiguation with sense classification as an
auxiliary task. We follow the idea of previous work
that sense classification can be performed without
extracting the connectives’ arguments (Pitler and
Nenkova, 2009; Lin et al., 2014; Qin et al., 2016).
Further, it has been previously shown that, for the
identification of an explicit relation’s sense, the con-
nective itself as well as its context already provide
significant information (Pitler and Nenkova, 2009;
Lin et al., 2014; Wang and Lan, 2015; Ghosh et al.,
2011). Consequently, we assume the necessary in-
formation for sense classification to be already ac-
cessible by our neural connective disambiguation
model to some degree. Also, this approach elim-

3Note that a word’s context refers to the words immediately
preceding and succeeding it, which is not to be confused with
contextualized or noncontextualized word embeddings.
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inates the error propagation and the performance
of our joint model stays as is without relying on
previous predictions. The reason for adding sense
classification as an auxiliary task in the first place
is that joint training with auxiliary tasks has shown
benefits in earlier work, as mentioned in Section 1.
We could validate that this is the case with our
connective disambiguation task as well, as later
demonstrated in our experiments (see Section 4.2).

In the following sections, we explain in more de-
tail our binary connective disambiguation approach
and the joint sense classification model.

3.1 Embedding-Based Connective
Disambiguation

For parsing explicit discourse relations, the first
task usually involves the identification of possible
connective candidates. For this purpose, we use a
list of candidate patterns based on PDTB2. Some
candidates might look like discourse connectives,
however, they might only be in sentential use.

Connective annotation in PDTB?2 is quite flex-
ible. Connectives can be individual words (‘in-
deed’), multiple consecutive words (‘in the end’),
or distant words that function together (‘neither

. nor’). In addition, they can contain adverbial
modifications (‘at least when,” ‘even when,” ‘usu-
ally when’), which vastly increases the number of
possible connectives. Regarding this problem, the
CoNLL Shared Task introduced a mapping that nor-
malizes instances of connectives to their head by re-
moving adverbial modifiers. For example, the three
full connectives above all normalize to their head
‘when.” For our studies, we follow this approach
and focus on the disambiguation of connective head
candidates rather than fully annotated connectives
as in the original corpus.

We introduce a simple neural architecture (see
Figure 1) that relies on pretrained word embeddings
instead of hand-engineered features. The network
consists of a multilayer perceptron with a single
hidden layer. As the network’s input, we use the
candidate word’s embeddings and its context.

A continuous token sequence of length » is en-
coded as an embedding sequence (e}, e, ...,e,).
We define our input with regards to the candidate’s
positions within the sentence (denoted as C) and
use cmin and cmax for the first and last occurrence
of the candidate, respectively. Finally, with a con-
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Figure 1: Model overview. The average of the connec-
tive embeddings and their context serve as input, a sin-
gle hidden layer is used for transformation, and the final
layer outputs either the connective probability or sense
classes.

text size of s, our input looks as follows:

crxleﬁft = (ecmin—s’ teeo ecmin—l)
conn= (e, : c€C)
Ctxright = (ecmax+1’ creo ecmax+s)

Because the candidate might consist of multiple
words (‘in particular’), we simply average all can-
didate embeddings and concatenate remaining em-
beddings to build the network’s input x:

X = ClXjppy + CONN + CIX oy

Thus, independent of the number of words describ-
ing a connective candidate, the input always has
the same dimension. We do not average the em-
beddings of the context because this would lead to
unwanted information loss.

For the transformation of candidates and their
context into word embeddings, we use the tokeniza-
tion provided by the CoNLL Shared Tasks. No other
annotations such as POS, constituent trees, and de-
pendencies are used for our experiments. GloVe
and fastText are used for noncontextualized embed-
dings and BERT for contextualized embeddings.
For contextualized embeddings, we noticed a differ-
ence in the tokenization of contractions. Therefore,
we simply replaced occurrences of the token ‘n’t’
by ‘not’ without changing the overall meaning.

The usage of embeddings is straightforward.
Each token in a document is mapped to its embed-
ding representation. In contrast, the contextualized
embeddings are generated sentence-wise before ex-
tracting context and candidate embeddings. The
input for BERT is prepared with special tags for
sentence beginnings and ends. Further, original to-
kens might be split into smaller tokens based on the
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WordPiece tokenizer (Wu et al., 2016) before feed-
ing them into BERT’s encoder. This possibly leads
to a higher number of BERT subtoken embeddings
than tokens defined on the original corpus. Based on
the alignment of original tokens and BERT subto-
kens, only the first BERT subtoken embedding of a
corresponding token is used as its embedding. This
selection follows the original BERT publication
(Devlin et al., 2019), where features were extracted
and the finally predicted classes only rely on the
first subtoken’s position.

3.2 Joint Disambiguation and Sense
Classification

For the reasons explained in the beginning of Sec-
tion 3, we combine binary connective disambigua-
tion and sense classification into a single, second
model. Thus, the model jointly learns whether a con-
nective candidate serves as a discourse signal and,
if so, determines its sense. We use the same model
as in our previous experiment (see Figure 1) but in-
troduce a novel prediction scheme for the joint clas-
sification. As both tasks have exclusive classes, our
model either predicts whether a candidate is with-
out sense, which is equivalent to having sentential
reading, or predicts one of the desired sense classes.
Combining multiple tasks into a single model is
called multitask learning (see Section 6).

4 Evaluation

For our experiments, we use PDTB2 (Prasad
et al., 2008), especially the version provided for
the CoNLL Shared Task. We distinguish between
coarse senses, which come from the original PDTB,
and fine senses as defined by the Shared Task. Also,
an official split is provided that makes comparisons
to other systems more reliable. In particular, this
means that we used folders 02-22 for training, fold-
ers 00 and 01 as a development set, and folders 23
and 24 for testing. We downloaded word embed-
dings for GloVe* and fastText> from their corre-
sponding websites. For the contextualized embed-
dings, we extracted token embeddings that we had
previously transformed using BERT.®

As we work with highly imbalanced data, we
present our results using precision, recall, and
F1 score. Typically, there is a natural inverse rela-

“nlp.stanford.edu/data/glove.6B.zip

3d1l.fbaipublicfiles.com/fasttext/
vectors-english/wiki-news-300d-1M.vec.zip

®We use the bert-base-uncased model provided by
Huggingface’s transformer (Wolf et al., 2019).


nlp.stanford.edu/data/glove.6B.zip
dl.fbaipublicfiles.com/fasttext/vectors-english/wiki-news-300d-1M.vec.zip
dl.fbaipublicfiles.com/fasttext/vectors-english/wiki-news-300d-1M.vec.zip

Model | Conn Disambiguation | Coarse Sense Classification | Fine Sense Classification
Flconn Flconn Flsense FICO/W Flsense
Standard WSJ Test (Section 23)
bert-ctx-1 97.32 (99.20) 96.98 (99.77) 93.03 96.63 (99.78) 84.17
bert-ctx-0 97.20 (99.29) 97.45 (99.81) 92.12 97.18 (99.76) 86.26
bert-ctx-2 96.97 (99.08) 95.96 (99 71) 89.57 95.81 (99 72) 81.94
baseline 95.46 (97.11) — —
fasttext-ctx-1 92.09 (94.95) 92.26 (98.61) 87.51 92.63 (98.45) 80.39
glove-ctx-2 92.02 (94.58) 92.03 (98.52) 85.56 90.13 (98.20) 82.35
glove-ctx-1 91.76 (94.69) 91.90 (98.44) 87.22 91.30 (98.18) 78.17
fasttext-ctx-2 91.29 (94.98) 92.51 (98.86) 88.66 91.77 (98.47) 78.18
glove-ctx-0 84.99 (80.98) 84.33 (92.36) 75.53 84.80 (92.62) 66.19
fasttext-ctx-0 84.79 (80.72) 84.20 (92.27) 77.62 84.23 (92.59) 68.79
Wikipedia Blind Test
bert-ctx-0 97.03 (98.52) 96.75 (99.74) 88.79 96.28 (99.72) 71.69
bert-ctx-1 96.98 (98.38) 96.18 (99.65) 90.41 96.31 (99.69) 71.51
bert-ctx-2 96.40 (97.29) 95.09 (99 56) 87.92 94.01 (99 54) 66.97
baseline 94.50 (95.06) — —

fasttext-ctx-2 88.99 (90.31) 89.34 (97.95) 82.05 88.26 (97.42) 59.81
fasttext-ctx-1 88.74 (90.10) 88.01 (97.56) 78.46 89.74 (98.06) 62.74
glove-ctx-1 87.86 (88.80) 87.39 (96.95) 77.85 87.78 (97.19) 62.92
glove-ctx-2 87.54 (87.61) 87.63 (97.45) 78.31 87.01 (97.10) 61.15
glove-ctx-0 81.86 (73.77) 82.36 (90.66) 64.16 81.87 (90.91) 40.46
fasttext-ctx-0 81.76 (73.64) 82.98 (90.70) 67.61 82.28 (90.87) 45.68

Table 2: Experimental results for various embedding types (GloVe, fastText, BERT) and context sizes (ctx). Evalu-
ation involves Section 23 of WSJ and the blind data set proposed for CoNLL Shared Task. All tasks are measured
using F1 scores. Average precision is calculated for connective disambiguation and shown in parentheses. Results
are ordered by primary task and separated with regards to the groups highlighted in Figure 2.

tion between precision and recall—as one increases,
the other decreases. Depending on the final usage,
either one could be optimized. While in previous
work, scores were usually reported for one specific
threshold only, we decided to use precision—recall
curves for our experimental results. These give a
better understanding of the models’ sensitivity to
the selected threshold in our binary disambiguation
task. To approximate the area under the precision—
recall curve, we compute the average precision (AP)
score. While F1 score indicates performance for a
single threshold only, the AP score helps to com-
pare the precision—recall curves of various models.

In our experiments, we study different embed-
ding types (GloVe, fastText, BERT) with a varying
context size (ctx € {0, 1,2}). The dimension (emb)
of the noncontextualized word embeddings is 300
and 768 for contextualized embeddings, which re-
sults in an input size of (2 * ctx + 1) * emb.
The size of the hidden layer is 2048. All models
were trained for at most 50 epochs using early stop-
ping (Prechelt, 1998) when validation loss did not
improve over 10 epochs, a batch size of 128, and
the Adam (Kingma and Ba, 2015) optimizer with
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a learning rate of 0.001. For comparison, we also
provide a baseline from a reimplementation of Lin
et al. (2014). Table 2 reports the performances of
our models per experimental setting for each data
partition (test and blind) and highlights best perfor-
mances. In the remainder of this section, we discuss
the experimental results obtained for the models
presented in Sections 3.1 and 3.2.

4.1 Embedding-Based Connective
Disambiguation

Table 2 shows that for contextualized word embed-
dings, our model generally outperforms the base-
line, in particular, the bert-ctx-1 configuration.
This confirms our hypothesis that it is possible to
disambiguate connectives to a good extent by us-
ing word embeddings. Further, certain groups of
experiments can be visually distinguished (see Fig-
ures 2a). The weakest performance was achieved
when using noncontextualized word embeddings
and zero context. This is probably due to the ambi-
guity of words that have multiple senses. Models
that take context into account clearly outperform
those with standalone embeddings. From this, we



06

bert-ctx-0 U
bert-ctx-1
bert-ctx-2 |
glove-ctx-0

glove-ctx-1

glove-ctx-2

wiki-ctx-0

wiki-ctx-1

wiki-ctx-2

06

07
Recall

06

(d) Binary on Blind Data

07

Recal

(e) Coarse Sense on Blind Data

08 09 06 07
1 Recall

(f) Fine Sense on Blind Data

Figure 2: Precision—recall curves for connective disambiguation for the different models—binary disambiguation
(left), joint coarse sense (middle), joint fine sense (right)—and data sets—test (top) and blind (bottom). The baseline

is shown as a dashed line.

conclude that single noncontextualized word em-
beddings do not contain enough discourse informa-
tion but that a model can compensate the missing
information with the connective’s context. Finally,
contextualized embeddings seem to already contain
this discourse information, as varying context sizes
did not lead to clearly different results. Also, these
embeddings may have outperformed noncontextual-
ized embeddings because their features are already
based on full sentences. As shown in Figure 2, the
baseline exhibited a high level of performance, be-
tween that of noncontextualized embeddings with
context and contextualized embeddings.

Comparing the results on the test (Figures 2a)
and blind (Figures 2d) data sets, we notice the usual
drop in performance, as both data sets differ in their
distribution. The test set comes from news articles,
while the blind set is based on Wikipedia. With
other feature-based models submitted to the Shared
Tasks, we expect this performance drop to be higher,
so that our model would generalize better.

We carried out a further analysis on the test
data in order to characterize weaknesses of using
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word embeddings for connective disambiguation.
Therefore, we examined our contextualized embed-
ding model without context (bert-ctx-0), as it
yielded high performance despite its low complex-
ity. For most of the rare classification mistakes made
by our model, we found that there existed similar
embeddings to those that were misclassified, which
naturally made them hard to distinguish for our
model.

4.2 Joint Disambiguation and Sense
Classification

For our second experimental setting, we study the
influence of jointly training connective disambigua-
tion and sense classification (coarse and fine senses
shown in Figures 2b and 2c, respectively). As our
hypothesis, we assumed generalization to improve
with increasing task complexity. For the commonly
evaluated F1 score, we do not see a vast improve-
ment between connective disambiguation and the
joint training approach. In addition to the previous
metric, we use the average precision score that bet-
ter summarizes the overall ratio of precision and
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Figure 3: Confusion matrix of bert-ctx-0 on test data for joint disambiguation and sense classification. Relative
class values are reported for coarse and fine senses. The label None represents an absence of connectives.

recall for a single model. With respect to this metric,
we notice higher values for both kinds of sense clas-
sification in contrast to connective disambiguation.
This confirms that, although the single F1 score
might not change that much, more complex tasks
indeed improve model generalization and result in
more stable models. Further, it appears that training
our model on fine senses is somewhat less effective
for the main disambiguation task, as training on
coarse senses often slightly outperforms it.

Finally, we studied the predictions of our contex-
tualized embedding model (see Figure 3) as before.
Here, we compare both sense levels and notice a
change of performance in Contingency and Expan-
sion. While the coarse model works better on the
second class than the first one, this turns around for
the fine-sense model. Especially for the fine-sense
model, we observe an overall drop of performance,
which could be related to the smaller number of
samples per class.

5 Discussion

In our final comparison, Table 3 shows our best-
performing models for each category (standard vs.
contextualized embeddings and connective disam-
biguation vs. joint training for sense classification).
For comparison, we included test results from suc-
cessful submissions to the CoNLL 2016 Shared
Task (Xue et al., 2016)—in particular, results that
were achieved for connective disambiguation in the
first part of the Shared Task and results for explicit
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sense classification taken from the second part. As
Table 3 shows, when using contextualized embed-
dings, our model outperformed the other systems
with F1 scores of up to 97.32. The authors of the
models (Stepanov and Soochow) unfortunately
submitted results only for the first task, and thus, we
cannot compare their performance on sense classifi-
cation to our model’s performance. The numbers for
sense classification of our proposed contextualized
embedding approach are slightly below those of the
compared systems. But it is important to note that
the other systems are prone to error propagation—
errors made early throughout the pipeline nega-
tively affect all subsequent steps. However, in the
competitions, error propagation was eliminated by
providing preprocessed data to the competing sys-
tems. This can be considered an unfair advantage
over our system, which performed all tasks simul-
taneously and thus had to operate on raw data.

6 Related Work

In this section, we discuss work relevant to the area
of discourse parsing, in particular, connective dis-
ambiguation and sense classification. Finally, recent
work on word embeddings and multitask learning
with regard to discourse parsing is outlined.

For connective disambiguation, Pitler and
Nenkova (2009) defined a set of syntactic features
extracted from constituency trees. Beside the con-
nective’s surface and category information from
related tree nodes (parent, siblings), they also used



Test Blind
MOdeI F 1 conn F 1 sense F 1 conn F 1 sense
Ecnuc 93.96 90.13 91.34 77.41
OPT 94.43 90.13 91.79 7717
Stepanov 92.43 — 88.56 —
Soochow 94.74 — 91.04 —
ctx-embd (bert-ctx-1) 97.32 — 96.98 —
ctx-embd-mtl (bert-ctx-0) 97.18 86.26 96.28 71.69
embd (wiki-ctx-1) 92.09 — 88.74 —
embd-mtl (wiki-ctx-1) 92.63 80.39 89.74 62.74

Table 3: Task-related F1 scores. Results are taken from the CoNLL 2016 Shared Task website (http://www.
cs.brandeis.edu/~clp/conlll6st/results.html) for the following parsers: OPT (Oepen et al., 2016), Ec-
nuc (Wang and Lan, 2016), Stepanov (Stepanov and Riccardi, 2016a), Soochow (Fan et al., 2016). The ending
-mt1 refers to the results for fine-sense classification in Table 2.

binary features that check whether categories are
contained by the nodes’ traces and pairwise interac-
tion features. In addition to these features, Lin et al.
(2014) propose a set of lexicosyntactic features, as
they observe that a connective’s immediate context
and part of speech is already a strong indicator for
disambiguation. The authors further extend those
features by category paths from the connective to
the root. Wang and Lan (2015) further extend the
previous two works and add similar features for
more syntactic context information of the connec-
tive. Oepen et al. (2016) combine previous feature
sets with work on identifying expressions of spec-
ulation and negation (Velldal et al., 2012). Recent
work of Webber et al. (2019) highlights the com-
plexity of several kinds of ambiguity when working
with discourse connectives.

The connective and its explicit sense have a
strong correlation as shown by Pitler and Nenkova
(2009), who report accuracy higher than the interan-
notator agreement for their connective disambigua-
tion features on coarse-grained level senses. Lin
et al. (2014) use only context features and evalu-
ate their work on second-level senses. Wang and
Lan (2015) extend previous features and develop
a model for the CoNNL Shared Task. Oepen et al.
(2016) use an ensemble of three types of classifiers
that are mainly based on previous features (Wang
and Lan, 2015). Stepanov and Riccardi (2016b)
use chained information extracted from syntactical
trees and chunk tags. Qin et al. (2016) use convo-
lutional neural networks on word-level embedded
sentence pairs but a linear model with additional
dependency features for sense classification.

Braud and Denis (2015) have shown that word
embeddings outperform sparse features for implicit

sense classification. They compare word pair fea-
tures with Brown clusters and low-dimensional
word embeddings. Bai and Zhao (2018) use dif-
ferent levels of input representations, ranging from
character level to contextualized word embeddings.
Kishimoto et al. (2020) adapt BERT to perform
implicit discourse sense classification. They show
promising results by adding tasks, such as connec-
tive prediction, for pretraining.

Multitask learning is also successfully applied
to implicit sense classification (Liu et al., 2016).
The authors combine four different tasks related to
discourse parsing, but in contrast to our work, they
rely on previously extracted argument spans. Qin
et al. (2017) propose a model that, in addition to
their main task (implicit sense classification), also
learns to predict a possible connective that could be
inserted. Lan et al. (2017) introduce various models
that perform multitask learning, and their focus also
lies on implicit sense classification.

7 Conclusions

In this work, we studied the value of discourse in-
formation in different kinds of word embeddings.
We first presented a novel feature-free approach to
connective disambiguation that achieves state-of-
the-art results on this task. Then, this approach was
extended by explicit sense classification to study
the influence of jointly training both tasks. While
our second approach does not directly outperform
previous approaches on explicit sense classification,
our model can be directly applied to raw input with-
out being subject to error propagation, which is an
advantage of our approach.

As our work indicates that combining multiple
subtasks avoid error propagation issues, a future
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direction could be to investigate what other kinds
of subtasks could be combined in order to benefit
from this. Also, word embeddings have shown to
be very flexible, and they are useful even for out-
of-domain data. It is worth investigating whether
they are suitable for language transfer. This is par-
ticularly interesting because data sets of a similar
quality to PDTB do not exist for many languages
other than English.
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