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Abstract

The effect of noisy labels on the performance
of NLP systems has been studied extensively
for system training. In this paper, we focus
on the effect that noisy labels have on system
evaluation. Using automated scoring as an ex-
ample, we demonstrate that the quality of hu-
man ratings used for system evaluation have a
substantial impact on traditional performance
metrics, making it impossible to compare sys-
tem evaluations on labels with different qual-
ity. We propose that a new metric, proportional
reduction in mean squared error (PRMSE), de-
veloped within the educational measurement
community, can help address this issue, and
provide practical guidelines on using PRMSE.

1 Introduction

NLP systems are usually trained and evaluated us-
ing human labels. For automated scoring systems,
these would be scores assigned by human raters.
However, human raters do not always agree on the
scores they assign (Eckes, 2008; Ling et al., 2014;
Davis, 2016; Carey et al., 2011) and the inter-rater
agreement can vary substantially across prompts
as well as across applications. For example, in the
ASAP-AES data (Shermis, 2014), the agreement
varies from Pearson’s r=0.63 to r=0.85 across “es-
say sets” (writing prompts) .

In many automated scoring studies, the data for
training and evaluating the system are randomly
sampled from the same dataset, which means that
the quality of human labels may affect both system
training and evaluation. Notably, the effect of la-
bel quality on training and evaluation may not be
the same. Previous studies (Reidsma and Carletta,
2008; Loukina et al., 2018) suggest that when anno-
tation noise is relatively random, a system trained
on noisier annotations may perform as well as a
system trained on clean annotations. On the other
hand, noise in the human labels used for evaluation

can have a substantial effect on the estimates of
system performance even if the noise is random.

In this paper, our focus is the effect of noise in
human labels on system evaluation. How do we
compare two systems evaluated on datasets with
different quality of human labels? While there exist
several public data sets that can be used to bench-
mark and compare automated scoring systems, in
many practical and research applications the scor-
ing systems are customized for a particular task and,
thus, cannot be evaluated appropriately on a public
dataset. As a result, the research community has to
rely on estimates of system performance to judge
the effectiveness of the proposed approach. In an
industry context, the decision to deploy a system is
often contingent on system performance meeting
certain thresholds which may even be codified as
company- or industry-wide standards.

A typical solution to the problem of differ-
ent human-human agreement across evaluation
datasets is to use human-human agreement itself
as a baseline when evaluating a system (Shermis,
2014). In this case, the system can be evaluated
either via a binary distinction (did its performance
reach human-human agreement?) or by looking
at the differences in agreement metrics as mea-
sured between two humans and between a single
human and the machine, known as “degradation”
(Williamson et al., 2012). Yet how do we interpret
these numbers? Is a system that exceeds a human-
human agreement of r=0.4 on one dataset better
than another that performs just below a human-
human agreement of r=0.9 on a different dataset?

In this paper, we use simulated data to demon-
strate that the rate of human-human agreement has
a substantial effect on estimates of system perfor-
mance, making it difficult to compare systems that
are evaluated on different datasets. We also show
that this problem cannot be resolved by simply
looking at the difference between human-human
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and machine-human agreement. We then show
that one possible solution is to use proportional
reduction in mean squared error (PRMSE) (Haber-
man, 2008), a metric developed in the educational
measurement community, which relies on classical
test theory and can adjust for human error when
computing estimates of system performance.

2 Related work

The effect of noisy labels on machine learning al-
gorithms has been extensively studied in terms of
their effect on system training in both general ma-
chine learning literature (see, for example, Frénay
and Verleysen (2014) for a comprehensive review),
NLP (Reidsma and Carletta, 2008; Beigman Kle-
banov and Beigman, 2009; Schwartz et al., 2011;
Plank et al., 2014; Martínez Alonso et al., 2015;
Jamison and Gurevych, 2015) and automated scor-
ing (Horbach et al., 2014; Zesch et al., 2015).

One key insight that emerged from such work is
that the nature of the noise is extremely important
for the system performance. Machine learning al-
gorithms are greatly affected by systematic noise
but are less sensitive to random noise (Reidsma and
Carletta, 2008; Reidsma and op den Akker, 2008).
A typical case of random noise is when the labeling
is done by multiple annotators which minimizes
the individual bias introduced by any single anno-
tator. For example, in a study on crowdsourcing
NLP tasks, Snow et al. (2008) showed that a system
trained on a set of non-expert annotations obtained
from multiple annotators outperformed a system
trained with labels from one expert, on average.

The studies discussed so far vary the model train-
ing set, or training regime, or both while keeping
the evaluation set constant. Fewer studies have con-
sidered how inter-annotator agreement may affect
system evaluation when the training set is held con-
stant. These studies have shown that in the case
of evaluation, the label quality is likely to have a
substantial impact on the estimates of system per-
formance even if the annotation noise is random.

Reidsma and Carletta (2008) used simulated data
to explore the effect of noisy labels on classifier per-
formance. They showed that the performance of the
model, measured using Cohen’s Kappa, when eval-
uated against the ‘real’ (or gold-standard) labels
was higher than the performance when evaluated
against the ‘observed’ labels with added random
noise. This is because for some instances, the clas-
sifier’s predictions were correct, but the ‘observed’

labels contained errors.

Loukina et al. (2018) used two different datasets
to train and evaluate an automated system for scor-
ing spoken language proficiency. They showed that
training an automated system on perfect labels did
not give any advantage over training the system
on noisier labels, confirming previous findings that
automated scoring systems are likely to be robust
to random noise in the data. At the same time, the
choice of evaluation set led to very different esti-
mates of system performance regardless of what
data was used to train the system.

Metrics such as Pearson’s correlation or
quadratically-weighted kappa, commonly used to
evaluate automated scoring systems (Williamson
et al., 2012; Yannakoudakis and Cummins, 2015;
Haberman, 2019), compare automated scores to ob-
served human scores without correcting for any er-
rors in human scores. In order to account for differ-
ences in human-human agreement, these are then
compared to the same metrics computed for the hu-
man raters using measures such as “degradation”:
the difference between human-human and human-
machine agreement (Williamson et al., 2012).

In this paper, we build on findings from the edu-
cational measurement community to explore an
alternative approach where estimates of system
performance are corrected for measurement error
in the human labels. Classical test theory (Lord
and Novick, 1968) assumes that the human holis-
tic score is composed of the test’s true score and
some measurement error. A “true” score is de-
fined as the expected score over an infinite number
of independent administrations of the test. While
such true scores are latent variables, unobservable
in real life, their underlying distribution and mea-
surement error can be estimated if a subset of re-
sponses is scored by two independently and ran-
domly chosen raters. Haberman (2008); Haberman
et al. (2015); Haberman and Yao (2015); Yao et al.
(2019a,b); Zhang et al. (2019) proposed a new met-
ric called proportional reduction in mean squared
error (PRMSE) which evaluates how well the ma-
chine scores predict the true score, after adjusting
for the measurement error. The main contribution
of this paper is a further demonstration of the utility
of this metric in the context of automated scoring.
Outside of educational measurement, a similar ap-
proach has been been explored in pattern recogni-
tion by Lam and Stork (2003), for example, who
used estimated error rates in human labels to adjust
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performance estimates.
We further explore how agreement between hu-

man raters affects the evaluation of automated scor-
ing systems. We focus on a specific case where the
human rating process is organized in such a way
that annotator bias is minimized. In other words,
the label noise can be considered random. We also
assume that the scores produced by an automated
scoring system are on a continuous scale. This is
typical for many automated scoring contexts includ-
ing essay scoring (Shermis, 2014), speech scoring
(Zechner et al., 2009) and, to some extent, con-
tent scoring (Madnani et al., 2017a; Riordan et al.,
2019) but, of course, not for all possible contexts:
for example, some of the SemEval 2013 shared
tasks on short answer scoring (Dzikovska et al.,
2016) use a different scoring approach.

3 Simulated data

In this paper, we use simulated gold-standard (or
“true”) scores, human scores and system scores for a
set of 10,000 responses. Since “true” scores are not
available for real data, using simulated data allows
us to compare multiple raters and systems to the
known ground-truth.1 We focus on evaluation only
and make no assumptions about the quality of the
labels in the training set or any other aspects of
system training. The only thing we know is that
different human raters and different systems in our
data set assign different scores and have different
performances when evaluated against true scores.

As our gold-standard, we use a set of continu-
ous scores simulated for each response and con-
sider these to be the correct “true” score for the
response. Note that the continuous nature of gold-
standard scores allows us to capture the intuition
that some responses fall between the ordinal score
points usually assigned by human raters. To create
such gold-standard scores, we randomly sampled
10,000 values from a normal distribution using the
mean and standard deviation of human scores ob-
served in a large-scale assessment (mean=3.844,
std=0.74). Since the scores in the large-scale as-
sessment we use as reference varied from 1 to 6,
the gold-standard scores below 1 and above 6 were
also truncated to 1 and 6 respectively.

Next, we simulated scores from 200 human
raters for each of these 10,000 “responses”. For

1cf. Reidsma and Carletta (2008); Yannakoudakis and
Cummins (2015) who also used simulated data to model sys-
tem evaluation.

each rater, its score for a response was modeled
as the gold-standard score for the response plus a
random error. We model different groups of raters:
with low (inter-rater correlation r=0.4), moderate
(r=0.55), average (r=0.65) and high (r=0.8) agree-
ment. The correlations for different categories were
informed by correlations we have observed in em-
pirical data from various studies. The errors for
each rater were drawn from a normal distribution
with a mean of 0. We chose the standard devia-
tion values used to sample the errors in order to
create 4 categories of 50 raters, each defined by
a specific average inter-rater correlation. Since in
most operational scenarios, human raters assign
an integer score, all our simulated human scores
were rounded to integers and truncated to lie in
[1, 6], if necessary. Table 1 shows the correlations
between the simulated human rater scores within
each category.

Category # raters HH-corr mean std
Low 50 0.40 3.83 1.14
Moderate 50 0.55 3.83 0.99
Average 50 0.65 3.83 0.91
High 50 0.80 3.83 0.83

Table 1: A description of the 4 categories of simulated
human raters used in this study. The table shows the
label of each category, the number of raters in the cat-
egory, the average correlation between pairs of raters
within the category, and the mean and standard devia-
tion of the scores assigned by raters in the category.

For each response, we also simulated 25 au-
tomated scores. Like human scores, automated
scores were simulated as gold-standard scores plus
random error. We chose the standard deviation
values used to sample the random errors so as to
obtain specific levels of performance against the
gold-standard scores: the worst system had a Root
Mean Squared Error (RMSE) of 0.74 score points
while the best system had an error of 0.07 score
points. Since the interpretation of RMSE depends
on the score scale, we chose these values as the
percentage of gold-standard score variance.

Table 2 summarizes different automated systems
simulated for this study. We created 5 categories
of systems with 5 systems in each category. For
the worst systems (“poor”), the mean squared error
was equal to the variance of gold-standard scores
(R2=0). In other words, in terms of scoring error,
a system from the “poor” category performed no
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better than a constant.2 For the best system (from
the “perfect” category), the mean squared error was
only 0.1% of gold-standard score variance with
the system achieving an R2 of 0.99. The systems
within each category were very close in terms of
performance as measured by mean squared error
but the actual simulated scores for each system
were different. These simulated systems will help
evaluate whether performance metrics can both
differentiate systems with different performance
and correctly determine when two systems have
similar performance.

Category N R2 (GS) r (GS) r (‘Average’)
Poor 5 0.01 0.71 0.57
Low 5 0.40 0.79 0.64
Medium 5 0.65 0.86 0.69
High 5 0.80 0.91 0.74
Perfect 5 0.99 1.00 0.80

Table 2: A description of the 5 categories of simulated
systems used in this study. The table shows the label
of each category, the number of systems in the cate-
gory, the average R2 of the systems within the cate-
gory, and the r when evaluating the systems in the cate-
gory against the gold-standard scores (“GS”). The last
column shows the average correlation of the systems’
scores with simulated rater scores from the “Average”
category.

To summarize, the final simulated dataset con-
sisted of 10,000 “responses”. Each response had 1
“gold-standard” score, 200 “human” scores and 25
“system” scores. 3

4 Problems with traditional metrics

4.1 Rating quality and performance

We first considered how the quality of human labels
affects the estimates of the metrics that are typically
used to evaluate automated scoring engines. For
the analyses in this section, we used the scores
from one of our simulated systems from the “High”
system category (R2 with gold-standard scores =

2R2 = 1 −
∑

(yi−ŷi)
2∑

(yi−ȳ)2
where yi are the observed values

(human scores), ŷi are the predicted values and ȳ is the mean
of observed score. R2 standardizes the MSE by the total vari-
ance of the observed values leading to a more interpretable
metric that generally varies from 0 to 1, where 1 corresponds
to perfect prediction and 0 indicates that the model is no more
accurate than simply using mean value as the prediction.

3The data and the code are publicly available at
https://github.com/EducationalTestingService/
prmse-simulations. We encourage the readers to use this
code to run further simulations with varying input parameters.

0.8). We then randomly sampled 50 pairs of simu-
lated raters from each rater category and evaluated
the human-machine agreement for each pair. We
used both the score from the first rater in the pair as
well as the average of the the two rater scores in the
pair as our reference score and computed four met-
rics: Pearson’s r4, quadratically-weighted kappa
(QWK)5,R2, and degradation (correlation between
the scores of the two humans minus the correlation
between scores of our chosen system and the ref-
erence human score). Figure 1 shows how these
metrics for the same system vary depending on the
human agreement in the evaluation dataset.

As the figure shows, the estimates of perfor-
mance for the same set of scores vary drastically
depending on the quality of human ratings whether
we use the score from the first human rater or the
average of the two scores. For example, estimates
of correlation vary from mean r = 0.69 when com-
puted against the average scores of two raters with
low agreement to r = 0.86 when computed against
the average score of two raters with high agreement.
The difference between r = 0.69 and r = 0.86 is
considerable and, at face value, could influence
both deployment decisions in an industry context
as well as conclusions in a research context. Yet all
it actually reflects is the amount of noise in human
labels: both correlations were computed using the
same set of automated scores. Looking at degrada-
tion does not resolve the issue: the degradation in
our simulation varied from −0.05 to −0.30. It is
obvious that the metrics improve when the human-
human agreement goes from low to high, regardless
of which metric is used, and do not provide a sta-
ble estimate of model performance. This pattern is
consistent across different sets of automated scores.

4.2 Rating quality and ranking

Given how much the estimates of system perfor-
mance vary depending on the quality of human
ratings, it is clear that the quality of human ratings
will also affect the comparison between different
systems if they are evaluated on different datasets.

To demonstrate this, we randomly sampled 25
pairs of simulated raters with different levels of
human-human agreement, the same as the number
of simulated systems in our data, and “assigned” a
different pair to each system. Each pair of raters

4We use raw correlation coefficients, not z-transforms, as
is the norm in automated scoring literature.

5QWK for continuous scores was computed cf. Haberman
(2019) as implemented in RSMTool (Madnani et al., 2017b)

https://github.com/EducationalTestingService/prmse-simulations
https://github.com/EducationalTestingService/prmse-simulations
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Figure 1: The effect of human-human agreement on the evaluation results for the same set of automated scores
against either the first human rater or the average of two human raters. Note that the metrics are on different scales.

is always sampled from the same rater category
but different systems are evaluated on pairs from
different rater categories. Thus, for example, 3 of
5 systems in the “low” system category were eval-
uated against rater pairs with “high” agreement,
while the remaining two systems in that category
were evaluated against rater pairs with “average”
agreement. At the same time, for “medium” cate-
gory systems, 3 out of 5 systems were evaluated on
raters with “low” agreement (see also Table 1 in the
Appendix). This simulation was designed to mimic,
in a simplified fashion, a situation where different
research studies might evaluate their systems on
datasets with different quality of human ratings 6.

We then evaluated each system against their as-
signed rater pairs using the standard agreement
metrics and ranked the systems based on each of
the metrics. The results are presented in the first
four subplots in Figure 2.7 For comparison, we also
evaluated the systems against a single pair of raters
from the “average” rater category, i.e., using the
same rater pair for each system. The system rank-
ing when systems are evaluated against this same
rater pair are shown as red dots. The figure shows
that when different systems are evaluated against
the same pair of raters, their ranking is consistent
with what we know to be the correct ranking in our
simulated dataset. However, when different sys-
tems are evaluated against different pairs of raters,
their ranking can vary depending on the quality of
the ratings and the chosen metric. All metrics -
except degradation - correctly ranked the worst per-
forming systems (in the “poor” system category),

6Note that the random assignment between rater categories
and systems is a key aspect of this simulation since we are
exploring a situation where the system performance is inde-
pendent of the quality of human labels used to evaluate such
systems.

7The last subplot will be explained in §5.2.

but they could not reliably differentiate between
the other categories. In our simulated dataset, we
see substantial overlaps in R2 between systems in
the “medium“, “high“, and “perfect“ system cate-
gories, with even larger overlaps for other metrics.

Notably, when rater quality differs across the
datasets used to evaluate a system, the degradation
between human-human and system-human agree-
ment, a common way to control for differences in
said rater quality, does not always provide accurate
system rankings. In our simulated dataset, based
on degradation, some of the systems from the “per-
fect“ system category ranked lower than some of
the systems from the “medium” system category.

4.3 What if we had more than two raters?

Figure 1 showed that evaluating system scores
against the average of two raters leads to higher
estimates of agreement than when the system is
evaluated against a single rater. This is not sur-
prising: in our simulated dataset, the rater error is
modeled as random and averaging across several
simulated raters means that errors can cancel out
when the number of raters is sufficiently large. In
fact, we expect that evaluating the system against
the average of multiple raters should provide perfor-
mance estimates close to the known performance
against the gold-standard scores. In this section,
we simulated a situation where each response is
scored by up to 50 raters.

For each category of raters, we randomly ordered
the raters within this category and computed the
cumulative average score of an increasing number
of raters. We then evaluated the same system from
the “high” system category used in §4.1 against this
cumulative average score. The results are presented
in Figure 3. The red lines indicate the values when
evaluating the system’s performance against the
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Figure 2: The ranking of systems from different categories when evaluated against randomly selected pairs of raters
with different human-human agreement levels. The X axis shows the known ranking of the simulated systems in
terms of their performance measured against the gold-standard scores. The red dots show the ranking when the
systems are evaluated against the same pair of raters.

Figure 3: The effect of number of raters on several common metrics. Each plot shows a different metric computed
for a randomly chosen system in our dataset against an increasing number of human raters. The red line indicates
the metric value computed against the gold-standard scores & different colors indicate different rater categories.

gold-standard scores. As expected, for all rater cat-
egories, the performance estimates for the system
approach the known gold-standard performance as
the number of raters increases.

5 PRMSE with reference to true scores

The simulations in the previous sections demon-
strate that the values of metrics usually used to
evaluate automated scoring systems are directly de-
pendent on the quality of human ratings used to
evaluate the system. In fact, the effect of human
label quality can be so large such that two identi-
cal systems may appear drastically different while
the performance of two very different systems may
appear very similar. One possible solution is to
collect additional ratings for each response from
multiple raters as we showed in §4.3. This solu-
tion is likely to be too expensive to be feasible: for
example, in our simulated dataset, we would need
to collect at least 10 additional ratings for each re-

sponse in order to obtain stable estimates of system
performance, more if the rater agreement is low.

The solution we propose comes from the educa-
tional measurement community and draws on test
theory methods to adjust the system performance
estimates for measurement error.

5.1 The definition of PRMSE

The main idea behind PRMSE is to evaluate the
automated scores against the true scores rather
than the observed human scores. Classical test
theory assumes that the human label H consists of
the true score T and a measurement error E and
Var(H) = Var(T ) + Var(E). While it is impos-
sible to compare system scores to the latent true
scores for each individual response, it is possible
to use the variability in human ratings to estimate
the rater error and to compute an overall measure
of agreement between automated scores and true
scores after subtracting the rater error from the vari-
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ance of the human labels.
Just like R2, PRMSE relies on the concepts of

mean squared error (MSE) and proportional reduc-
tion in mean squared error (hence PRMSE), but in
this case, these measures are computed between the
automated score M and the true score T instead
of the human label H , where MSE = E(M − T )2

and PRMSE = 1− MSE
Var(T ) .

Also similar to R2, PRMSE is expected to fall
between 0 and 1. A value of 0 indicates that sys-
tem scores explain none of the variance of the true
scores, while a value of 1 implies that system scores
explains all the variance of true scores. In general,
the higher the PRMSE, the better the system scores
are at predicting the true scores.

We provide a detailed derivation for PRMSE in
the Appendix. A Python implementation
of PRMSE is available in RSMTool in the
rsmtool.utils.prmse module8.

5.2 PRMSE and human-human agreement

In this section, we show how PRMSE can help ad-
dress the issues discussed in §4. We first consid-
ered the case where the same system is evaluated
against ratings of different quality. As shown in
§4.1, all traditional metrics of system performance
are affected by human-human agreement and, there-
fore, estimates for these metrics vary depending on
which pair of raters is used to evaluate the sys-
tem. Therefore, in this section, we only compare
PRMSE to R2.

Figure 4: R2 with average human score and PRMSE for
the same system when evaluated against human ratings
with different levels of agreement. The red line shows
the value of R2 when evaluating system performance
against gold-standard scores.

We used the same pairs of raters and the same
systems as in §4.1 to compute PRMSE and then

8https://rsmtool.readthedocs.io/en/stable/api.
html#prmse-api

compared its values to the values ofR2 for the same
pair of raters. Both these metrics rely on comparing
the mean prediction error to the variance of gold-
standard scores. For R2, the gold-standards scores
are the observed human-assigned scores that are
available and can be used for computation. The
gold-standard scores for PRMSE are the latent true
scores that cannot be used directly: the metric is
instead computed using the observed human scores
and the estimates of rater variance as explained in
the previous section.9 Figure 4 shows the values
of R2 when evaluating the same system against
different categories of human raters and the values
of PRMSE for the same evaluations. While R2,
as we have already seen, varies between 0.43 and
0.71 depending on the quality of human ratings,
PRMSE remains relatively stable between 0.76 and
0.82. We also note that the values of PRMSE are
centered around the R2 between system scores and
gold-standard scores (0.8 in this case), as expected.

Next, we considered whether PRMSE can help
obtain stable system rankings when systems are
evaluated against human ratings with different qual-
ities. We used the same combinations of simulated
rater pairs and systems as in §4.2 and computed
PRMSE for each system and rater pair. We then
ranked the systems based on their PRMSE values.
The results are presented in the last subplot in Fig-
ure 2. The figure shows that even though differ-
ent systems were evaluated against human ratings
of different quality, their final ranking based on
PRMSE was consistent with the known correct rank-
ing based on the gold-standard scores.

In summary, PRMSE is more robust to the quality
of human ratings used for system evaluation and
can reliably rank systems regardless of the quality
of human labels used to evaluate them.

5.3 PRMSE and double-scoring

In §5.2, we considered a situation where all re-
sponses are double-scored. In reality, often only
a subset of responses has several scores available
to compute inter-rater agreement. The formula for
PRMSE presented in the Appendix also allows us to
compute PRMSE in such a situation: in this case, the
variance of human errors is computed using only
the double-scored responses. The prediction error

9Although the true scores are known in our simulation,
the values of PRMSE in this and the following sections are
computed using observed human scores only following the
formulas in the Appendix, without using the simulated true
scores.

https://rsmtool.readthedocs.io/en/stable/api.html##prmse-api
https://rsmtool.readthedocs.io/en/stable/api.html##prmse-api
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Figure 5: The distribution of PRMSE values depending on the percentage (left) or number (right) of double-scored
responses. Different colors indicate levels of inter-rater agreement, i.e, rater category. The dotted line shows the
knownR2 against gold-standard scores. Some PRMSE values for N=100 and “low” agreement were around 1.6 and
are omitted for clarity. PRMSE values > 1 indicate that sample size is too small to reliably estimate error variance.

and variance are computed using all responses in
the sample and either the average of two scores
when available or the single available score. The
numbers are adjusted for the percentage of the total
number of ratings available for each response.

To test how PRMSE values depend on the per-
centage of double scored responses, we randomly
sampled 50 pairs of raters from each rater category
and created, for each of these 200 pairs, 7 new
datasets each with a different percentage of double-
scored responses. We then computed PRMSE for a
randomly selected system from the “high” category
for each of these 1,400 datasets. To check whether
it is the percentage of double-scored responses that
matters or the number of double-scored responses,
we also computed a second PRMSE value over
only the double-scored responses available in each
case. For example, when simulating the scenario
where we only have 10% of the responses double-
scored, we compute two PRMSE values: (a) over the
full dataset (10,000 responses) with 10% (1,000)
double-scored and 90% (9,000) single-scored re-
sponses and (b) over a smaller dataset that only
includes the 1,000 double-scored responses. The
results are shown in Figure 5 (see also Table 2 in
the Appendix). These results show that PRMSE val-
ues are much more stable with a larger number
of double-scored responses and what matters is
the total number of double-scored responses, not
their percentage in the sample. There is substantial
variability in PRMSE values when the number of
double-scored responses is low, especially when
computed on human ratings with low inter-rater
agreement. In our simulated experiments, consis-
tent values of PRMSE (to the first decimal) were
achieved with 1,000 responses if the quality of

human ratings was moderate-to-high. More re-
sponses would be necessary to reliably estimate
PRMSE with low inter-rater agreement.

6 Discussion

The performance of automated systems is often
lower on data with lower human-human agreement.
While this may mean that responses harder to score
for humans are also harder to score for machines,
our analyses show that this is not always true. Fur-
thermore, since subsets of the same dataset are
often used for both system training and evaluation,
separating the effect of noisy labels on training
from that on evaluation may be impossible.

In this paper, we showed that even for the same
set of automated scores, estimates of system perfor-
mance depend directly on the the quality of the hu-
man labels used to compute the agreement metrics.
We also showed that using standard performance
metrics to compare two systems may be misleading
if the systems are evaluated against human scores
with different inter-rater agreements. Comparing
system performance to human-human agreement
using degradation does not resolve this issue.

We proposed that a new metric, PRMSE, devel-
oped within the educational measurement commu-
nity for evaluation is an effective way to obtain
estimates of system performance that are adjusted
for human-human agreement. PRMSE provides sys-
tem evaluation against ‘true’ scores, thus making it
possible to compare different systems on the same
scale and offering a performance metric that is ro-
bust to the quality of human labels.

We emphasize that PRMSE does not affect the
evaluation results when the systems are evaluated
on the same set of human labels, for example, in
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the context of a shared task or a benchmark dataset.
However, it can help compare system performance
across studies as well as within studies, for exam-
ple, when the dataset includes multiple items with
varying levels of human-human agreement in their
respective human scores.

The theory behind PRMSE makes certain assump-
tions about the nature of the rater error: it is as-
sumed to be random with a mean of 0 and finite
variance. Furthermore, the rater error is assumed
to be independent of the item and its true score.
There are several steps one can take to make sure
the data meets these assumptions. For example,
a standard way to randomize rater error is to set
up the scoring process in a way such that multiple
raters each score a different set of responses. Fur-
thermore, one should additionally check whether
human ratings have similar mean and variance. We
note that other models discussed in the NLP litera-
ture (see §2), made other assumptions, for example
that noisier labeling is more likely for some items
(“hard” cases) than others. The performance of
PRMSE under such conditions remains subject for
future studies.

Finally, while PRMSE can adjust estimates of sys-
tem performance for human error, it does not fully
address the issue of different datasets. Users of
automated scoring still need to use their judgement
– or additional extrinsic criteria – to decide whether
two systems can be deemed comparable.

7 Practical guidelines for PRMSE

We conclude with guidelines for using PRMSE.
• PRMSE estimates of system performance are ro-

bust to human-human agreement and can be used
to compare systems across datasets.

• PRMSE computation assumes that the rating pro-
cess is set up to randomize rater error: e.g. even if
most responses only have a single score, the scor-
ing process should involve multiple raters each
scoring a different set of responses to minimize
individual rater bias.

• Both sets of human ratings used to estimate
PRMSE should have similar mean and variance
and similar agreement with system scores.

• Responses selected for double-scoring must be a
random sample of all responses.

• We recommend a total of at least 1000 double-
scored responses to reliably estimate the human
error. For human-human correlations > 0.65,
a smaller sample (such as 500) might suffice.

PRMSE values above 1 indicate that the double-
scored sample is too small.

• PRMSE should be used in combination with other
metrics of human-machine agreement.
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A The distribution between system and
rater categories

The table below shows how systems from different
categories were assigned to different pairs of raters.

Human-human agreement
System Low Moderate Average High
Poor 1 3 0 1
Low 0 0 2 3
Medium 3 0 1 1
High 2 1 1 1
Perfect 2 0 2 1

Table 3: The distribution between different systems and
different pairs of raters. The table shows how many sys-
tems from each system category were evaluated using
pairs of raters from different rater categories.

B Deriving the PRMSE formula

Let
• N denote the total number of responses in the

evaluation set
• ci denote the number of human ratings for re-

sponse i,
• Hij denote human rating j = 1, . . . , ci for re-

sponse i, and
• H̄i = 1

ci

∑ci
j=1Hij denote the average human

rating for response i.
• H̄ =

∑
i ci H̄i∑
i ci

denote the average of all human
ratings.

• Let Mi denote the predicted score for response i.
The true human score model assumes a hypothet-

ical infinite population/sequence of human raters
that could score responses and assumes that the
raters a response actually receives are an unbiased
sample from this population. The raters Hij are
assumed to have the same error variance and the
errors eij are uncorrelated. The model defines the

true human score by

Ti = lim
ci→∞

1

ci

ci∑
j=1

Yij = E[Hij ] (1)

and the error εij as εij = Hij − Ti, or stated
differently Hij = Ti + εij .

B.1 Estimating the error variance
If we have only two ratings per response then we
estimate the error variance by recognizing

Vε =
1

2
E[(Hi2 −Hi1)2] (2)

which can easily be estimated with the unbiased
estimator

V̂ε =
1

2N

N∑
i=1

(Hi2 −Hi1)2 (3)

When we have more than two raters, the variance
of rater errors is computed as a pooled variance
estimator. We first calculate the within-subject vari-
ance of human ratings Vi for each response i using
denominator ci − 1:

Vi =

∑c
j=1(Hi,j − H̄i)

2

ci − 1
(4)

We then take a weighted average of those within-
responses variances:

V̂ε =

∑N
i=1 Vi ∗ (ci − 1)∑N
i=1(ci − 1)

(5)

B.2 Estimating true score variance
An unbiased estimator of the true score variance is

V̂T ≡ V̂ar(T ) =

∑N
i=1 ci(H̄i− H̄)2 − (N − 1)V̂ε

c· −
∑N

i=1 c
2
i

c·
(6)

where c· =
∑N

i=1 ci is the total number of ob-
served human scores.

B.3 Estimating mean squared error
We estimate the mean squared error of the auto-
mated scores Mi with the following unbiased esti-
mator.

M̂SE(T |M) =
1

c·

(
N∑
i=1

ci(H̄i −Mi)
2 −NV̂ε

)
(7)
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B.4 Estimating PRMSE

With estimators for the MSE and the variance of
the true score available, estimation of PRMSE is
simple.

̂PRMSE = 1− M̂SE(T |M)

V̂T
(8)

C Impact of double-scoring

Table 4 shows the range of PRMSE values we ob-
served for different number of double-scored re-
sponses and human-human agreement.

Human-human agreement
N Low Moderate Average High
100 1.01 0.41 0.26 0.12
250 0.46 0.30 0.15 0.09
500 0.33 0.17 0.12 0.07
1,000 0.24 0.13 0.08 0.06
2,500 0.18 0.09 0.07 0.03
5,000 0.08 0.07 0.04 0.02
10,000 0.06 0.03 0.02 0.02

Table 4: The range of observed PRMSE values for differ-
ent number double-scored responses and different lev-
els of human-human agreement.


