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1 Description

All communication aims at achieving common
ground (grounding): interlocutors can work to-
gether effectively only with mutual beliefs about
what the state of the world is, about what their
goals are, and about how they plan to make their
goals a reality (Clark et al., 1991). Computational
dialogue research, in particular, has a long history
of influential work on how implemented systems
can achieve common ground with human users,
from formal results on grounding actions in con-
versation (Traum, 1994) to machine learning re-
sults on how best to fold confirmation actions into
dialogue flow (Levin et al., 1998; Walker, 2000).
Such classic results, however, offer scant guidance
to the design of grounding modules and behav-
iors in cutting-edge systems, which increasingly
combine multiple communication modalities, ad-
dress complex tasks, and include the possibility
for lightweight practical action interleaved with
communication. This tutorial is premised on the
idea that it’s time to revisit work on grounding
in human–human conversation, particularly Bren-
nan’s general and important characterization of
grounding as seeking and providing evidence of
mutual understanding (Brennan, 1990), in light of
the opportunities and challenges of multi-modal
settings such as human–robot interaction.

In this tutorial, we focus on three main topic
areas: 1) grounding in human-human communi-
cation; 2) grounding in dialogue systems; and 3)
grounding in multi-modal interactive systems, in-
cluding image-oriented conversations and human-
robot interactions. We highlight a number of
achievements of recent computational research in
coordinating complex content, show how these re-
sults lead to rich and challenging opportunities
for doing grounding in more flexible and power-
ful ways, and canvass relevant insights from the

A: A green bike with tan
handlebars. B: Got it
(Manuvinakurike et al.,
2017)

A: The green cup is
called Bill. B: Ok, the
green cup is Bill. [point
to the inferred object]
(Liu and Chai, 2015)

Figure 1: Examples of the generation and interpreta-
tion of grounded referring expressions in multimodal
interactive settings. Grounding is making sure that the
listener understands what the speaker said.

literature on human–human conversation. We ex-
pect that the tutorial will be of interest to re-
searchers in dialogue systems, computational se-
mantics and cognitive modeling, and hope that
it will catalyze research and system building that
more directly explores the creative, strategic ways
conversational agents might be able to seek and
offer evidence about their understanding of their
interlocutors.

Grounding in human-human communication.
Clark et al. (1991) argued that communication is
accomplished in two phases. In the presentation
phase, the speaker presents signals intended to
specify the content of the contributions. In the sec-
ond phase, the participants work together to estab-
lish mutual beliefs that serve the purposes of the
conversation. The two phases together constitute
a unit of communication–contributions. Clark and
Krych (2004) show how this model applies to co-
ordinated action, while Stone and Stojnić (2015)
applies the model to text-and-video presentations.
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Coherence is key.

Grounding in dialogue systems. Computer
systems achieve grounding mechanistically by en-
suring they get attention and feedback from their
users, tracking user state, and planning actions
with reinforcement learning to resolve problem-
atic situations. We will review techniques for
maintaining engagement (Sidner et al., 2005; Bo-
hus and Horvitz, 2014; Foster et al., 2017) and
problems that arises in joint attention (Kontogior-
gos et al., 2018) and turn taking such as incre-
mental interpretation (DeVault and Stone, 2004;
DeVault et al., 2011), ambiguity resolution (De-
Vault and Stone, 2009) and learning flexible di-
alogue management policies (Henderson et al.,
2005). Similar questions have been studied in the
context of instruction games (Perera et al., 2018;
Thomason et al., 2019; Suhr and Artzi, 2018), and
interactive tutoring systems (Yu et al., 2016; Wig-
gins et al., 2019).

Grounding in multi-modal systems. Multi-
modal systems offer the ability to use signals such
as nodding, certain hand gestures and gazing at a
speaker to communicate meaning and contribute
to establishing common ground (Mavridis, 2015).
However, multi-modal grounding is more than just
using pointing to clarify. Multi-modal systems
have diverse opportunities to demonstrate under-
standing. For example, recent work has aimed to
bridge vision, interactive learning, and natural lan-
guage understanding through language learning
tasks based on natural images (Zhang et al., 2018;
Kazemzadeh et al., 2014; De Vries et al., 2017a;
Kim et al., 2020). The work on visual dialogue
games (Geman et al., 2015) brings new resources
and models for generating referring expression for
referents in images (Suhr et al., 2019; Shekhar
et al., 2018), visually grounded spoken language
communication (Roy, 2002; Gkatzia et al., 2015),
and captioning (Levinboim et al., 2019; Alikhani
and Stone, 2019), which can be used creatively to
demonstrate how a system understand a user. Fig-
ure 1 shows two examples of models that under-
stand and generate referring expressions in multi-
modal settings.

Similarly, robots can demostrate how they un-
derstand a task by carring it out—in research
on interactive task learning in human-robot inter-
action (Zarrieß and Schlangen, 2018; Carlmeyer
et al., 2018) as well as embodied agents perform-

Show me a restaurant
by the river, serv-
ing pasta/Italian food,
highly rated and expen-
sive, not child-friendly,
located near Cafe
Adriatic. (Novikova
et al., 2016)

Crystal Island, an
interactive narrative-
centered virtual
learning environment
(Rowe et al., 2008)

Figure 2: Content and medium affect grounding. This
figure shows two examples of interactive multimodal
dialogue systems.

ing interactive tasks (Gordon et al., 2018; Das
et al., 2018) in physically simulated environments
(Anderson et al., 2018; Tan and Bansal, 2018) of-
ten drawing on the successes of deep learning and
reinforcement learning (Branavan et al., 2009; Liu
and Chai, 2015). A lesson that can be learned
from this line of research is that one main fac-
tor that affects grounding is the choice of medium
of communication. Thus, researchers have devel-
oped different techniques and methods for data
collection and modeling of multimodal commu-
nication (Alikhani et al., 2019; Novikova et al.,
2016). Figure 2 shows two example resources that
were put together using crowdsourcing and virtual
reality systems. We will discuss the strengths and
shortcomings of these methods.

We pay special attention to non-verbal ground-
ing in languages beyond English, including Ger-
man (Han and Schlangen, 2018), Swedish (Kon-
togiorgos, 2017), Japanese (Endrass et al., 2013;
Nakano et al., 2003), French (Lemaignan and
Alami, 2013; Steels, 2001), Italian (Borghi and
Cangelosi, 2014; Taylor et al., 1986), Spanish
(Kery et al., 2019), Russian (Janda, 1988), and
American sign language (Emmorey and Casey,
1995). These investigations often describe impor-
tant language-dependent characteristics and cul-
tural differences in studying non-verbal ground-
ing.

Grounding in end-to-end language & vision
systems. With current advances in neural mod-
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elling and the availability of large pretrained mod-
els in language and vision, multi-modal interac-
tion often is enabled by neural end-to-end archi-
tectures with multimodal encodings, e.g. by an-
swering questions abut visual scenes (Antol et al.,
2015; Das et al., 2017). It is argued that these
shared representations help to ground word mean-
ings. In this tutorial, we will discuss how this
type of lexical grounding relates to grounding in
dialogue from a theoretical perspective (Larsson,
2018), as well as within different interactive ap-
plication scenarios – ranging from interactively
identifying an object (De Vries et al., 2017b) to
dialogue-based learning of word meanings (Yu
et al., 2016). We then critically review existing
datasets and shared tasks and showcase some of
the shortcomings of current vision and language
models, e.g. (Agarwal et al., 2018). In contrast
to previous ACL tutorials on Multimodal Learning
and Reasoning, we will concentrate on identifying
different grounding phenomena as identified in the
first part of this tutorial.

2 Outline

We begin by discussing grounding in human-
human communication (∼20 min). After that, we
discuss the role of grounding in spoken dialogue
systems (∼30 min) and visually grounded interac-
tions including grounding visual explanations in
images and multimodal language grounding for
human-robot collaboration (∼90 min). We then
survey methods for developing and testing mul-
timodal systems to study non-verbal grounding
(∼20 min). We follow this by describing common
solution concepts and barrier problems that cross
application domains and interaction types (∼20
min).

3 Prerequisites and reading list

The tutorial will be self-contained. For further
readings, we recommend the following publica-
tions that are central to the non-verbal grounding
framework as of late 2019:

1. Grounding in communication, Herb Clark
and Susan Brennan. (Clark et al., 1991)

2. Meaning and demonstration by Una Stojnic
and Matthew Stone (Stone and Stojnić, 2015)

3. Using Reinforcement Learning to Model In-
crementality in a Fast-Paced Dialogue Game,
Ramesh Manuvinakurike, David DeVault and

Kallirroi Georgila. (Manuvinakurike et al.,
2017)

4. Language to Action: Towards Interactive
Task Learning with Physical Agents, Joyce
Y. Chai by Joyce Y. Chai et al.(Chai et al.,
2018)

5. It’s Not What You Do, It’s How You Do It:
Grounding Uncertainty for a Simple Robot,
Julian Hough and David Schlangen. (Hough
and Schlangen, 2017)

6. Learning Effective Multimodal Dialogue
Strategies from Wizard-of-Oz Data: Boot-
strapping and Evaluation rieser-lemon by
Verena Rieser and Oliver Lemon. (Rieser and
Lemon, 2008)

7. A survey of nonverbal signaling methods for
non-humanoid robots by Elizabeth Cha et al.
(Cha et al., 2018)

8. The Devil is in the Details: A Magnifying
Glass for the GuessWhich Visual Dialogue
Game by Alberto Testoni et al. (Testoni et al.,
2019)
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