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Abstract

Long short-term memory (LSTM) networks
and their variants are capable of encapsulat-
ing long-range dependencies, which is evident
from their performance on a variety of linguis-
tic tasks. On the other hand, simple recurrent
networks (SRNs), which appear more biolog-
ically grounded in terms of synaptic connec-
tions, have generally been less successful at
capturing long-range dependencies as well as
the loci of grammatical errors in an unsuper-
vised setting. In this paper, we seek to develop
models that bridge the gap between biologi-
cal plausibility and linguistic competence. We
propose a new architecture, the Decay RNN,
which incorporates the decaying nature of neu-
ronal activations and models the excitatory and
inhibitory connections in a population of neu-
rons. Besides its biological inspiration, our
model also shows competitive performance rel-
ative to LSTMs on subject-verb agreement,
sentence grammaticality, and language model-
ing tasks. These results provide some pointers
towards probing the nature of the inductive bi-
ases required for RNN architectures to model
linguistic phenomena successfully.

1 Introduction

For the last couple of decades, neural networks
have been approached primarily from an engineer-
ing perspective, with the key motivation being ef-
ficiency, consequently moving further away from
biological plausibility. Recent developments (Song
et al., 2016; Gao and Ganguli, 2015; Sussillo and
Barak, 2013) have however incorporated explicit
constraints in neural networks to model specific
parts of the brain and have found a correlation be-
tween the learned activation maps and actual neural
activity recordings. Thus, these trained networks
can perhaps act as a proxy for a theoretical investi-
gation into biological circuits.

∗∗Equal Contribution

Recurrent Neural Networks (RNNs) have been
used to analyze the principles and dynamics of neu-
ral population responses by performing the same
tasks as animals (Mante et al., 2013). However,
these networks violate Dale’s law (Dale, 1935;
Strata and Harvey, 1999), which states that the neu-
rons have either a purely excitatory or inhibitory
effect on other neurons in the mammalian brain.
The decaying nature of the potential in the neu-
ron membrane after receiving signals (excitatory
or inhibitory) from the surrounding neurons is also
well-studied (Gluss, 1967). The goal of our work
is to incorporate these biological features into the
RNN structure, which gives rise to a neuro-inspired
and computationally inexpensive recurrent network
for language modeling, which we call a Decay RNN
(Section 4). We perform learning using the back-
propagation algorithm. Despite its differences with
the way learning is believed to happen in the brain,
it has been argued that the brain can implement
its core principles (Hinton, 2007; Lillicrap et al.,
2020). We assess our model’s ability to capture
syntax-sensitive dependencies via multiple linguis-
tic tasks (Section 6): number prediction, grammati-
cality judgement (Linzen et al., 2016) which entails
subject-verb agreement, and a more complex lan-
guage modeling task (Marvin and Linzen, 2018).

Subject-verb agreement, where the main noun
and the associated verb must agree in number, is
considered as evidence of hierarchical structure in
English. This is exemplified using a sentence taken
from the dataset made available by Linzen et al.
(2016):

1. *All trips on the expressway requires a toll.

2. All trips on the expressway require a toll.

The effect of agreement attractors (nouns having
number opposite to the main noun; expressway
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in the above example1) between the main noun
and main verb of a sentence has been well-studied
(Linzen et al., 2016; Kuncoro et al., 2018). Our
work also highlights the influence of non-attractor
intervening nouns. For example,

• A chair created by a hobbyist as a gift to
someone is not a commodity.2

In the number prediction task, if a model correctly
predicts the grammatical number of the verb (singu-
lar in case of ‘is’), it might be due to the (helpful) in-
terference of non-attractor intervening nouns (‘hob-
byist’, ‘gift’, ‘someone’) rather than necessarily
capturing its dependence the main noun (‘chair’).
From our investigation in Section 6.2, we find that
the linear recurrent models take cues present in
the vicinity of the main verb to predict its number,
apart from the agreement with the main noun.

In the subsequent sections, we investigate the
performance of the Decay RNN and other recurrent
networks, showing that no single sequential model
generalizes well on all (grammatical) phenomena,
which include subject-verb agreements, reflexive
anaphora, and negative polarity items as described
in Marvin and Linzen (2018). Our major outcomes
are:

1. Designing a relatively simple and bio-inspired
recurrent model: the Decay RNN, which per-
forms on-par with LSTMs for linguistic tasks
such as subject-verb agreement and grammat-
icality judgement.

2. Pointing to some limitations of analyzing
the intervening attractor nouns alone for the
subject-verb agreement task and attempting
joint analysis of non-attractor intervening
nouns and attractor nouns in the sentence.

3. Showing that there is no linear recurrent
scheme which generalizes well on a variety
of sentence types and motivating research in
better understanding of the nature of biases
induced by varied RNN structures.

2 Related Work

There has been prior work on using LSTMs
(Hochreiter and Schmidhuber, 1997) for language

1Main noun and verb are highlighted in bold. Intervening
nouns are underlined. Asterisks mark unacceptable sentences.

2Sentence taken from the dataset made available by Linzen
et al. (2016).

modeling tasks. The work of Gers and Schmidhu-
ber (2001) has shown that LSTMs can learn sim-
ple context-free and context-sensitive languages.
However, as per the investigations carried out in
Kuncoro et al. (2018), it was observed that if the
model capacity is not enough, then LSTMs may not
generalize the long-range dependencies. Recently
many architectures have explicitly incorporated the
knowledge of phrase structure trees (Kuncoro et al.,
2018; Alvarez-Melis and Jaakkola, 2017; Tai et al.,
2015) which have shown improvement in general-
izing over long-range dependencies. At the same
time, Shen et al. (2019) proposed ON-LSTMs, a
modification to LSTMs that provides an inductive
tree bias to the structure. However, Dyer et al.
(2019) have shown that the success of ON-LSTMs
was due to their proposed metric to analyze the
model, not necessarily due to their architecture.

From the biological point of view, Capano et al.
(2015) used a hard reset of the membrane poten-
tial in contrast to a soft decay observed in a neu-
ronal membrane. At the same time, their learn-
ing paradigm is similar to the Hebbian learning
scheme (Hebb, 1949), which does not involve er-
ror backpropagation (Rumelhart et al., 1986). Our
work is closely related to the idea of modeling
the population of neurons as a dynamical system
(EIRNN) proposed by Song et al. (2016). How-
ever, their time constant parameter was based on
the concepts described in Wang (2002) while the
sampling rate was arbitrarily chosen. Given that
the chosen values only considered a certain class
of neurons (Yang et al., 2019), we believe that it
is not necessary to have the same values of the pa-
rameters for each cognitive task. Thus, we build on
their formulation by making the sampling rate and
time constant learnable as manifested by our decay
parameter, described in the next section.

3 Biological Preliminaries

According to Dale’s principle, a neuron is either
excitatory or inhibitory (Eccles, 1976). If a neu-
ron output produces a negative (positive) change in
the membrane potential of all the connected neu-
rons via its synapse, then it is said to be an in-
hibitory (excitatory) neuron. In a set of N neurons,
if W is the synaptic connection matrix, then the
connection from the neuron j to neuron i is ‘ex-
citatory’ if Wij > 0, and ‘inhibitory’ if Wij ≤ 0.
Capano et al. (2015) have argued that a balance be-
tween structural and response variability (entropy),
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and excitability (synaptic strength) of a network
maximizes the overall learning. This balance is
governed by the ratio of inhibitory and excitatory
neurons. They have further shown that this bal-
ance also maximizes the overall performance in
multitask learning. Catsigeras (2013) mathemati-
cally prove that Dale’s principle is necessary for an
optimal3 neuronal network’s dynamics.

In the postsynaptic neuron, the integration of
synaptic potentials is realized by the addition of
excitatory (+ve) and inhibitory (-ve) postsynaptic
potentials (PSPs). PSPs are electronic voltages,
that decay as a function of time due to spontaneous
reclosure of the synaptic channels. The decay of
the PSPs is controlled by the membrane constant τ ,
i.e., the time required by the PSP to decay to 37%
of its peak value (Wallisch et al., 2009).

4 Decay RNN

Here we present our proposed architecture, which
we call the Decay RNN (DRNN). Our architecture
aims to model the decaying nature of the voltage
in a neuron membrane after receiving impulses
from the surrounding neurons. At the same time,
we incorporate Dale’s principle in our architec-
ture. Thus, our model captures both the micro-
scopic and macroscopic properties of a group of
neurons. Adhering to the stated phenomena, we de-
fine our model with the following update equations
for given input x(t) at time t:
c(t) = (ReLU(W)Wdale)h

(t−1) +Ux(t) + b
h(t) = f(αh(t−1) + (1− α)c(t))

Here f is a nonlinear activation function, W and
U are weight matrices, b is the bias and h(t) repre-
sents the hidden state (analogous to voltage). We
define α ∈ (0,1) as a learnable parameter to incor-
porate a decay effect in the hidden state (analogous
to the decay in the membrane potential). Here α
acts as a balancing factor between the hidden state
h(t−1) and c(t).4 Wdale is a diagonal matrix, and
based on the empirical results on the mammalian
brain (Hendry and Jones, 1981), we set the last
20% of entries to -1, representing the inhibitory
connections, and the rest to 1 (See Appendix A.3).5

Unlike Song et al. (2016), we keep self-connections
in the network. Besides biological inspiration, our
model also has the following salient features.

3In the sense of showing the most diverse set of responses.
4It was kept bounded using a sigmoid function. Our results

did not change when we used a linear function instead.
5Our results did not change when we chose a different set

of -1 entries instead of the last 20%.

First, the presence of α acts as a coupled gating
mechanism to the flow of information (Figure 1), at
the same time maintaining an exponential moving
average of the hidden state. Thus, α values close
to 1 correspond to memories of the distant past. It
is worth mentioning that Oliva et al. (2017) have
considered the exponential moving average in the
context of RNNs. However, their approach manu-
ally selected a set of scaling parameters, whereas
we have a systematic way of arriving at the values
of those parameters by making them learnable for
the task at hand.

Second, our model also has an intrinsic skip con-
nection deriving out of its formulation.Yue et al.
(2018) has shown that the architectures with skip
connections provide an alternate path for the flow
of gradients during the error backpropagation. At
the same time presence of coupled gates slows
down the vanishing of gradient (Bengio et al.,
2013). Thus, despite of its simple un-gated struc-
ture, the features discussed above provide safe-
guards against vanishing gradient.

To examine the importance of Dale’s principle in
the learning process, we made a variant of our De-
cay RNN without Dale’s principle, which we call
the Slacked Decay RNN (SDRNN), with updates to
c(t) made as follows:

c(t) = Wh(t−1) +Ux(t) + b

To understand the role of the correlation between
the hidden states in the Decay RNN formulation,
we devised an ablated version of our architecture,
which we refer to as the Ab-DRNN. With the follow-
ing update equation, we remove the mathematical
factor (Wh(t−1)) that gives rise to a correlation
between hidden states:

h(t) = f(αh(t−1) + (1− α)(Ux(t) + b))

fα

1− α

h(t−1)

hidden

x(t)

input

h(t)

next hidden

Figure 1: Decay RNN cell, comprising of a skip con-
nection and coupled scalar gates.

5 Datasets

For the number prediction (Section 6.1) and gram-
maticality judgment (Section 6.3) tasks, we used a
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corpus of 1.57 million sentences from Wikipedia
(Linzen et al., 2016), of which 10% were used
for training, 0.4% for validation, and the remain-
ing were reserved for testing. On the other hand,
for the language modeling task (Section 6.4), the
model was trained on a 90 million word subset
of Wikipedia comprising of 3 million training and
0.3 million validation sentences (Gulordava et al.,
2018).

Despite having a large number of training points,
these datasets have certain drawbacks, including
the lack of a sufficient number of syntactically chal-
lenging examples leading to poor generalization
over the sentences out of the training data distribu-
tion. Therefore, we construct a generalization set
as described in Marvin and Linzen (2018), where
we generate the sentences out of templates that
can be described using a non-recursive context-free
grammar. The use of the generalization set allows
us to test on a much broader range of linguistic phe-
nomena. We will use this dataset for the targeted
syntactic evaluation of our trained models.

6 Experiments

Here we will describe our experiments6 to assess
the models’ ability to capture syntax-sensitive de-
pendencies. Details regarding the training settings
are available in Appendix A.4.

6.1 Number Prediction Task
The number prediction task was proposed by
Linzen et al. (2016). In this task, the model is
required to predict the grammatical number of the
verb when provided a sentence up to the verb.

1. The path to success is not straight forward.

2. The path to success

The model will take the second sentence as input
and has to predict the number of the verb (here,
singular). Table 1 shows the results on the number
prediction task. All the models including SRNs
performed well on this task. Thus, this indicates
that even vanilla RNNs can identify singular and
plural words and can associate the main subject
with the upcoming verb.

6.2 Joint Analysis of Intervening Nouns
So far in the literature, when looking at intervening
material in agreement tasks, the research has tended

6Our code is available at https://github.com/bhattg/Decay-
RNN-ACL-SRW2020

Model No. Prediction Grammaticality
SRN 97.70 50.12
LSTM 98.59 95.81
GRU 98.81 94.26
EIRNN 94.68 84.51
DRNN 98.66 95.48
SDRNN 98.65 96.83
Ab-DRNN 97.37 85.98

Table 1: % Accuracy of models when tested on ∼ 1.4
million sentences for the number prediction and gram-
maticality judgement tasks.

to focus on agreement attractors, the intervening
nouns with the opposite number to the main noun
(Kuncoro et al., 2018). However, we posit that the
role of non-attractor intervening nouns may also
be important when understanding a model’s deci-
sions. For long-range dependencies in agreement
tasks, a model may be influenced by the presence
of non-attractor intervening nouns instead of purely
capturing the verb’s relationship with the main sub-
ject. Hence an analysis done solely based on the
number of agreement attractors may be misleading.
Table 2 shows an improvement in the verb number
prediction accuracy with an increasing number of
non-attractors (n), even as the subject-verb distance
and the attractor count are kept fixed. This indi-
cates that the models are also using cues present in
the vicinity of the main verb to predict its number,
apart from agreement with the main noun.

Model n=0 n=1 n=2
DRNN 90.65 95.56 96.06
LSTM 90.4 95.56 95.63

Table 2: Number prediction % accuracy with an in-
creasing number of non-attractor intervening nouns (n).
The distance between the main subject and the corre-
sponding verb is held constant at 7 and the attractor
count at 1.

6.3 Grammaticality Judgement
The previous objective was predicting the grammat-
ical number of the verb after providing the model
an input sentence only up to the verb. However,
this way of training may give the model a cue to
the syntactic clause boundaries. In this section, we
describe the grammaticality judgment task. Given
an input sentence, the model has to predict whether
it is grammatical or not. To perform well on this
task, the model would presumably need to allocate
more resources to determine the locus of ungram-
maticality. For example, consider the following
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pair of sentences2 :

1. The roses in the vase by the door are red.

2. *The roses in the vase by the door is red.

The model has to decide, for input sentences such
as the above, whether each one is grammatically
correct or not. Table 1 shows the performance of
different recurrent architectures on this task. It
can be seen that SRNs, which were comparable to
LSTMs and GRUs on the prediction experiment
described in Section 6.1, are no better than ran-
dom on the grammaticality judgment task. On the
other hand, the Ab-DRNN performed better than
the SRN. This highlights the importance of a bal-
ance between the uncorrelated hidden states (h(t)),
and the connected hidden states (Wh(t)), which
is modeled by the Decay RNN. Due to its archi-
tectural similarity with the Independent RNN (Li
et al., 2018), which has independent connections
among neurons in a layer, Ab-DRNN did not suffer
from the vanishing gradient problem.

Importance of the generalization set
Capano et al. (2015) had argued that the inclusion
of Dale’s principle improved generalization abili-
ties for multitask learning. For our models trained
on a single task, we use the generalization set to
determine the number prediction confidence profile
over the sentences. Figure 2 describes the aver-
age number prediction confidence at each part of
speech for all prepositional phrases with inanimate
subjects. We note the anomalously low confidence
of the SDRNN at plural inanimate subjects (like
‘movies’, ‘books’), unlike the DRNN.

Task DRNN SDRNN
Across object RC (no that) anim 0.45 0.28
Reflexive Sentential Comp. 0.65 0.6
Long VP Coordination 0.53 0.43

Table 3: Accuracy comparison of DRNN and SDRNN
when tested on the generalization set for the grammat-
icality judgement task; ‘anim’ refers to an animated
noun.

In Table 3,7 we present the result of the models
trained for the grammaticality judgment task and
tested on the synthetic generalization set. From the
results, we can see that despite having nearly the
same accuracy on the original testing data (Table

7Here, we present three tests from the targeted syntactic
evaluation framework. Others test results can be found in
Appendix A.2.

Figure 2: Number prediction confidence (for the cor-
rect verb number) averaged over the generalization set
(540 sentences) for prepositional phrases with plural
inanimate subjects (IS). An example word for each po-
sition is indicated in parentheses. Values at ES indicate
the confidence for the following verb/auxiliary. For the
example sentence, confidence < 0.5 implies singular
verb number prediction, and confidence > 0.5 plural.

1), there is a substantial difference in the gener-
alization accuracies of the DRNN and SDRNN.
The DRNN shows better generalization than the
SDRNN in the experiments mentioned in Table 3
and Figure 2. This might be due to regularising
effects induced by Dale’s constraint. This is an
interesting observation that merits further investi-
gation.

6.4 Language Modeling

Word-level language modeling is a task that helps
in the evaluation of the model’s capacity to capture
the general properties of language beyond what is
tested in specialized tasks focused on, e.g., subject-
verb agreement. We use perplexity to compare our
model’s performance against standard sequential
recurrent architectures. Table 4 shows the valida-
tion perplexity of different language models along
with the number of learnable parameters for the
task. From the Table 4, we observe that incorporat-
ing the components of the Ab-DRNN and the SRN
in a coupled way might have led to the improved
performance of the Decay RNN.

6.5 Targeted Syntactic Evaluation

Targeted syntactic evaluation (Marvin and Linzen,
2018) is a way to evaluate the language model
across different classes of structure-sensitive phe-
nomena. This includes subject-verb agreement,
reflexive anaphora, and negative polarity items
(NPI).8 Table 4 shows that even with a simple archi-
tecture, the Decay RNN class of models performs

8The definitions of these linguistic terms are provided in
the supplementary material of Marvin and Linzen (2018).
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SRN GRU LSTM DRNN SDRNN Ab-DRNN ON-LSTM
Validation Perplexity 114.74 53.78 52.73 76.67 76.88 86.42 -
Parameters 1.4M 4.2M 5.6M 1.4M 1.4M 0.55M -
Short-Range Dependency
SV Agreement:
Simple 0.88 0.95 0.92 0.95 0.97 0.90 0.99
Sentential Complement 0.84 0.86 0.93 0.89 0.92 0.85 0.95
Short VP Coord 0.5 0.87 0.85 0.73 0.77 0.69 0.89
In an object RC 0.59 0.75 0.87 0.77 0.74 0.63 0.84
In an object RC (no that) 0.57 0.67 0.75 0.74 0.71 0.62 0.78
Reflexive Anaphora:
Simple 0.51 0.85 0.85 0.75 0.73 0.63 0.89
Sentential Complement 0.56 0.78 0.83 0.68 0.65 0.62 0.86
Negative Polarity Items :
Simple (grammatical vs. intrusive) 0.01 0.51 0.56 0.25 0.01 0.29 0.18
Simple (intrusive vs. ungrammatical) 0.7 0.66 0.48 0.54 0.5 0.51 0.5
Simple (grammatical vs. ungrammatical) 0.11 0.67 0.55 0.45 0.38 0.31 0.07
Long-Range Dependency
SV Agreement:
Long VP coordination 0.51 0.8 0.8 0.55 0.62 0.51 0.74
Across a PP 0.51 0.75 0.6 0.56 0.54 0.53 0.67
Across a subject RC 0.52 0.67 0.67 0.53 0.55 0.52 0.66
Across an object RC 0.51 0.51 0.55 0.64 0.58 0.57 0.57
Across an object RC (no that) 0.50 0.50 0.51 0.65 0.60 0.59 0.54
Reflexive Anaphora :
Across a RC 0.51 0.58 0.57 0.62 0.66 0.58 0.57
Negative Polarity Items:
Across a RC (grammatical vs. intrusive) 0.87 0.55 0.55 0.32 0.48 0.57 0.59
Across a RC (intrusive vs. ungrammatical) 0.02 0.29 0.22 0.5 0.37 0.36 0.20
Across a RC (grammatical vs. ungrammatical) 0.1 0.2 0.03 0.1 0.3 0.11 0.11
Mean Arithmetic Rank 5.94 3 3.31 3.52 3.68 4.73 2.94

Table 4: Accuracy of models on targeted syntactic evaluation. RC: Relative Clause, PP: Prepositional Phrase, VP :
Verb Phrase. Closeness in the mean arithmetic rank of models (other than SRNs) across tasks suggests that within
the current space of sequential recurrent models, none dominates the others.

fairly similarly to LSTMs and much better than
SRNs for many tests.9 In the case of long-range
dependencies and NPI involving relative-object
clauses, our models perform substantially better
than LSTMs. High variability in the performance
of the models in the case of NPIs might be due to
non-syntactic cues as pointed out by Marvin and
Linzen (2018). Based on the mean ranks observed
in Table 4, we conjecture that there is no sequential
recurrent structure at present which outperforms
the others across the board. However, SRNs alone
are not sufficient for most purposes.

7 Conclusion

In this paper, we proposed the Decay RNN, a bio-
inspired recurrent network that emulates the decay-
ing nature of neuronal activations after receiving
excitatory and inhibitory impulses from upstream
neurons. We have found that the balance between
the free term (h(t)) and the coupled term (Wh(t))
enabled the model to capture syntax-level depen-
dencies. As shown by McCoy et al. (2020); Kun-
coro et al. (2018), explicitly modeling hierarchical
structure helps to discover non-local structural de-
pendencies. The contrast in the performance of

9Results for the ON-LSTM are directly quoted from Shen
et al. (2019).

the language models encourages us to look at the
inductive biases, which might have led to better
syntactic generalization in certain cases. Recently,
Maheswaranathan and Sussillo (2020) showed the
existence of a line attractor in the dynamics of the
hidden states for sentiment classification. Thus,
similar dynamical-system-based analysis can be
extended to our settings to further understand the
working of the Decay RNN.

From the cognitive neuroscience perspective, it
would be interesting to investigate if the proposed
Decay RNN can capture some aspects of actual
neuronal behaviour and language cognition. Our
results here do at least indicate that the complex
gating mechanisms of LSTMs (whose cognitive
plausibility has not been established) may not be
essential to their performance on many linguistic
tasks, and that simpler and perhaps more cogni-
tively plausible RNN architectures are worth ex-
ploring further as psycholinguistic models.
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A Appendix

A.1 Effect of agreement attractors
In this section, we present the trends in the test-
ing performance of the LSTM and the Decay RNN
(DRNN) for the grammaticality judgment task. Fig-
ure 3 shows the performance of the models when
we fix the number of intervening nouns and vary
the count of attractors between the main subject
and the corresponding verb. The decreasing per-
formance of the models with the introduction of
more attractors indicates that they cause the mod-
els to get more confused about the upcoming verb
number.

A.2 Comparison between DRNN and
SDRNN

In Section 6.3, we saw that in terms of testing ac-
curacy for grammaticality judgment, the Slacked
Decay RNN (SDRNN) outperformed the Decay
RNN (DRNN). For a robust investigation of this
behaviour, we tested our models on the general-
ization set and mentioned a subset of our results
on grammaticality judgment in Table 3. Here we
present a bar graph (Figure 4) depicting the model
performance when tested on the generalization set
for the grammaticality judgment task. A substan-
tial difference in the performance of the SDRNN
and the DRNN reinforces the possibility of the reg-
ularizing effects of Dale’s principle.

A.3 Implementation of Dale’s constraint
∀wi,j ∈ ReLU(W), wi,j ≥ 0

ReLU(W)Wdale =


w1,1 w1,2 . . . w1,n

w2,1 w2,2 . . . w2,n
...

...
...

...
wn,1 wn,2 . . . wn,n




1 0 . . . 0
0 1 . . . 0
...

...
...

...
0 0 . . . −1

 =


+ + . . . −
+ + . . . −
...

...
...

+ + . . . −


A.4 Training settings
For the number prediction task and the grammat-
icality judgment task the network is trained as a
binary classifier. The network is single-layered,
with ReLU activation and trained with embedding
and hidden layer dimension being 50, and a batch
size of 1. We have reported the average accuracies
after 3 separate runs in Table 1. For targeted syntac-
tic evaluation, we have trained a language model
to predict the grammaticality of a sentence. In our
language model, we used a 2-layered network with
tanh activation, a dropout rate of 0.2 with embed-
ding dimension 200, hidden dimension 650, and

a batch size of 128. All models are trained with a
learning rate of 0.001 using the Adam optimizer
(Kingma and Ba, 2015).

A.5 Decay parameter (α) learning
In the main text, we describe the balancing effect of
α in the Decay RNN model. We present the trend
in the learned value of α throughout training for
the grammaticality task for various initializations
in Figure 5. We observe that for all α initializations
in the range (0,1), the learned value converges to
around 0.8. Hence, we initialize our α to 0.8 at the
start of the training process.
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Figure 3: Trends in the performance of the LSTM (blue) and DRNN (orange) models with increasing numbers of
intervening nouns. For each subplot corresponding to a fixed intervening noun number, the number of agreement
attractors increases as we move from left to right on the x-axis.

Figure 4: Performance of the LSTM (blue), DRNN (orange), and SDRNN (green) models for the different types
of sentences in the generalization set, when trained for the grammaticality judgment task. There were at least 200
test sentences for each of these types.
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Figure 5: Moving average of α over the course of training for different initializations. 1 unit of training length is 1
forward pass.


