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Abstract

Chinese word segmentation (CWS) and part-
of-speech (POS) tagging are important funda-
mental tasks for Chinese language processing,
where joint learning of them is an effective
one-step solution for both tasks. Previous stud-
ies for joint CWS and POS tagging mainly
follow the character-based tagging paradigm
with introducing contextual information such
as n-gram features or sentential representa-
tions from recurrent neural models. How-
ever, for many cases, the joint tagging needs
not only modeling from context features but
also knowledge attached to them (e.g., syn-
tactic relations among words); limited efforts
have been made by existing research to meet
such needs. In this paper, we propose a neu-
ral model named TWASP for joint CWS and
POS tagging following the character-based se-
quence labeling paradigm, where a two-way at-
tention mechanism is used to incorporate both
context feature and their corresponding syntac-
tic knowledge for each input character. Par-
ticularly, we use existing language processing
toolkits to obtain the auto-analyzed syntactic
knowledge for the context, and the proposed
attention module can learn and benefit from
them although their quality may not be perfect.
Our experiments illustrate the effectiveness of
the two-way attentions for joint CWS and POS
tagging, where state-of-the-art performance is
achieved on five benchmark datasets.1

1 Introduction

Chinese word segmentation (CWS) and part-of-
speech (POS) tagging are two fundamental and
crucial tasks in natural language processing (NLP)
for Chinese. The former one aims to find word
∗Partially done as an intern at Sinovation Ventures.
†Corresponding author.
1TWASP (code and the best performing models) is re-

leased at https://github.com/SVAIGBA/TwASP.

Figure 1: An example sentence with CWS and POS tag-
ging results, where the ambiguous part (in green color)
has dependencies from distant words (in yellow color).

boundaries in a sentence and the latter, on the top
of segmentation results, assigns a POS tag to each
word to indicate its syntactical property in the sen-
tence. To effectively perform CWS and POS tag-
ging, combining them into a joint task is proved to
have better performance than separately conducting
the two tasks in a sequence (Ng and Low, 2004).
Therefore, many studies were proposed in the past
decade for joint CWS and POS tagging (Jiang et al.,
2008, 2009; Sun, 2011; Zeng et al., 2013; Zheng
et al., 2013; Kurita et al., 2017; Shao et al., 2017;
Zhang et al., 2018). These studies, regardless of
whether they used conventional approaches (Jiang
et al., 2008, 2009; Sun, 2011; Zeng et al., 2013)
or deep learning based approaches (Zheng et al.,
2013; Kurita et al., 2017; Shao et al., 2017; Zhang
et al., 2018), focused on incorporating contextual
information into their joint tagger.

In addition, it is well known that syntactic struc-
ture is also able to capture and provide the informa-
tion of long-distance dependencies among words.
For example, Figure 1 shows an example of local
ambiguity, where the green highlighted part has
two possible interpretations – “报告 VV/书 NN”
(report a book) and “报告书 NN” (the report). The
ambiguity can be resolved with syntactic analysis;
for instance, the dependency structure, if available,
would prefer the first interpretation. While the sub-
ject and the object of the sentence (highlighted in
yellow) are far away from the ambiguous part in

https://github.com/SVAIGBA/TwASP
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Figure 2: The architecture of TWASP for the joint CWS and POS tagging with the two-way attention mechanism,
which is presented with example context features and their dependency knowledge (highlighted in yellow) from
auto-analyzed results for a character (i.e., “分” (split) highlighted in green) in the given sentence.

the surface word order, they are much closer in
the dependency structure (the subject depends on
“报告 VV” and ”书 NN” depends on the the ob-
ject). This example shows that syntactic structure
provides useful cues for CWS and POS tagging.

Syntactic knowledge can be obtained from man-
ually constructed resources such as treebanks and
grammars, but such resources require considerate
efforts to create and might not be available for a
particular language or a particular domain. A more
practical alternative is to use syntactic structures
automatically generated by off-the-shelf toolkits.
Some previous studies (Huang et al., 2007; Jiang
et al., 2009; Wang et al., 2011; Zhang et al., 2018)
verified the idea for this task by learning from auto-
processed corpora. However, their studies treat
auto-processed corpora as gold reference and thus
are unable to distinguishingly use it according to its
quality (the resulted knowledge is not accurate in
most cases). Therefore, the way to effectively lever-
age such auto-generated knowledge for the joint
CWS and POS tagging task is not fully explored.

In this paper, we propose a neural model named
TWASP with a two-way attention mechanism to
improve joint CWS and POS tagging by learning
from auto-analyzed syntactic knowledge, which
are generated by existing NLP toolkits and pro-
vide necessary (although not perfect) information
for the task. In detail, for each input character,
the proposed attention module extracts the context
features associated with the character and their cor-
responding knowledge instances according to the

auto-analyzed results, then computes the attentions
separately for features and knowledge in each at-
tention way, and finally concatenates the attentions
from two ways to guide the tagging process. In
doing so, our model can distinguish the important
auto-analyzed knowledge based on their contribu-
tions to the task and thus avoid being influenced
by some inferior knowledge instances. Compared
to another prevailing model, i.e., key-value mem-
ory networks (Miller et al., 2016), which can learn
from pair-wisely organized information, the two-
way attentions not only are able to do so, but also
fully leverage features and their knowledge rather
than using one to weight the other.2 We experiment
with three types of knowledge, namely, POS labels,
syntactic constituents, and dependency relations,
in our experiments. The experimental results on
five benchmark datasets illustrate the effectiveness
of our model, where state-of-the-art performance
for the joint task is achieved on all datasets. We
also perform several analyses, which confirm the
validity of using two-way attentions and demon-
strate that our model can be further improved by
synchronously using multiple types of knowledge.

2 The Model

The architecture of TWASP is illustrated in Figure
2. The left part shows the backbone of the model
for the joint CWS and POS tagging following

2We explain it in later part of the paper that, the output of
key-value memory networks mainly rely on the value embed-
dings, where keys are used to weight such embeddings.
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Figure 3: Examples of context features and their corresponding knowledge from (a) POS labels, (b) syntactic
constituents and (c) dependency relations. Features and knowledge for the character “分” are highlighted in yellow.

the character-based sequence labeling paradigm,
where the input is a character sequence X =
x1x2 · · ·xi · · ·xl and the output is a sequence of
joint labels Y = y1y2 · · · yi · · · yl. To enhance the
backbone paradigm, the proposed two-way atten-
tion module (as shown in the right part of Figure
2) takes the syntactic knowledge produced from
the input sentence, analyzes it and then feeds it to
the tagging process. In this section, we firstly in-
troduce the auto-analyzed knowledge, then explain
how the two-way attentions consume such knowl-
edge, and finally describe how the joint CWS and
POS tagging works with the resulted attentions.

2.1 Auto-analyzed Knowledge

Auto-analyzed knowledge is demonstrated to be
an effective type of resources to help NLP sys-
tems understand the texts (Song et al., 2017; Seyler
et al., 2018; Huang and Carley, 2019). One chal-
lenge for leveraging external knowledge for the
joint task is that gold-standard annotations are ex-
tremely rare for text in most domains, especially
the syntactic annotations. An alternative solution is
to use off-the-shelf NLP systems to produce such
knowledge, which is proved to be useful in previ-
ous studies (Huang et al., 2007; Jiang et al., 2009;
Wang et al., 2011; Zhang et al., 2018). Rather
than processing an entire corpus and then extract-
ing features or training embeddings from the re-
sulted corpus as in previous studies, our model
does not treat knowledge as gold references: it gen-
erates auto-analyzed knowledge for each sentence
and learns the weights of the corresponding fea-
tures. Formally, for a character sequence X , let

S and K denote the lists of context features and
knowledge for X , respectively. For each character
xi in X , let Si = [si,1, si,2, · · · si,j , · · · si,mi ] and
Ki = [ki,1, ki,2, · · · ki,j , · · · ki,mi ] be the sublists of
S and K for xi. Here, si,j and ki,j denote a context
feature and a knowledge instance, respectively.

In this paper, we use three types of syntactic
knowledge for the joint task, namely POS labels,
syntactic constituents, and dependency relations,
where POS labels indicate the syntactic information
of individual words, syntactic constituents provide
the structural grouping information for a text span,
and dependencies offer dependency relations be-
tween words. Figure 3 shows an example sentence
and the corresponding S and K. For character “分”
(highlighted in green), its Si andKi are highlighted
in yellow. In order to distinguish same knowledge
appearing with different context features, we use
a feature-knowledge combination tag to represent
each knowledge instance (e.g., “分子 NN”, “分
子 NP”, and “分子 dobj” in Figure 3). We explain
each type of knowledge below.

POS Labels Figure 3 (a) shows that, for each xi
(e.g., x6 =“分”), we use a 2-word window for both
sides to extract context features from S to form
Si (i.e., S6 = [“分子”, “结合”, “成”, “时”]), and
then get their corresponding knowledge instances
of POS labels from K to form Ki (i.e., K6 = [“分
子 NN”, “结合 VV”, “成 VV”, “时 LC”]).

Syntactic Constituents As shown in Figure 3
(b), the rule for extracting syntactic constituency
knowledge is as follows. We start with the word
containing the given character xi, go up the con-
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stituency tree to the first ancestor whose label is
in a pre-defined syntactic label list,3 then use all
the words under this node to select context features
from S, and finally combine the words with the
syntactic label of the node to select knowledge in-
stances fromK. For example, for x6=“分”, the low-
est syntactic node governing “分子” is NP (high-
lighted in yellow); thus S6 = [“分子”] and K6 =
[“分子 NP”]. Another example is x5=“成”, the
lowest acceptable node on its syntactic path is VP;
therefore, S5 = [“结合”, “成”, “分子”] and K5 =
[“结合 VP”, “成 VP”, “分子 VP”].

Dependency Relations Given a character xi, let
wi be the word that contains xi. The context fea-
tures Si include wi, wi’s governor, and wi’s de-
pendents in the dependency structure; those words
combined with their inbound dependency relation
labels form Ki. For example, for x6=“分”, w6 =
“分子”, which depends on “结合” with a depen-
dency label dobj. Therefore, S6 = [“分子”, “结
合”], and K6 = [“分子 obj”, “结合 root”].

2.2 Two-Way Attentions

Attention has been shown to be an effective method
for incorporating knowledge into NLP systems
(Kumar et al., 2018; Margatina et al., 2019) but
it cannot be used directly for feature and knowl-
edge in pair-wise forms. Previous studies on the
joint task normally directly concatenate the em-
beddings from context features and knowledge in-
stances into the embeddings of characters (Zhang
et al., 2018), which could be problematic for in-
corporating auto-analyzed, error-prone syntactic
knowledge obtained from off-the-shelf toolkits.

For both features and their knowledge instances
for X , we use a two-way attention design to have
separate attention for S andK. Particularly, the two
ways, namely, the feature way and the knowledge
way, are identical in architecture, where each way
has a feed-forward attention module (Raffel and
Ellis, 2015). For each xi, its Si and Ki are firstly
fed into the feature attention way and the knowl-
edge attention way, respectively, then computed
within each way, and their final attention vectors
are combined to feedback to the backbone model.

Take the feature way as an example, the attention

3Following Chen et al. (2006), the list has 12 syntactic
labels, namely, ADJP, ADVP, CLP, DNP, DP, DVP, LCP, LST,
NP, PP, QP, and VP.

weight for each context feature si,j is computed by

asi,j =
exp(h>i · esi,j)∑mi
j=1 exp(h

>
i · esi,j)

(1)

where hi is the vector from a text encoder for xi
and esi,j the embedding of si,j . Then we have the
weighted embedding asi for all si,j in Si via

asi =

mi∑
j=1

asi,je
s
i,j (2)

where
∑

denotes a element-wise sum operation.
For the knowledge way, the same process is ap-

plied to get aki by distinguishing and weighting
each knowledge instance ki,j . Finally, the output
of the two attention ways are obtained through an
concatenation of the two vectors: ai = asi ⊕ aki .

2.3 Joint Tagging with Two-way Attentions
To functionalize the joint tagging, the two-way at-
tentions interact with the backbone model through
the encoded vector hi and its output ai for each xi.

For hi, one can apply many prevailing encoders,
e.g., Bi-LSTM or BERT (Devlin et al., 2019), to
get the vector list [h1h2 · · ·hi · · ·hl] for X .

Once ai is obtained, we concatenate it with hi

and send it through a fully connected layer to align
the dimension of the output for final prediction:

oi = W · (hi ⊕ ai) + b (3)

where W and b are trainable parameters. After-
wards, conditional random fields (CRF) is used to
estimate the probability for yi over all possible joint
CWS and POS tags under xi and yi−1 by

p(yi|xi) =
exp(Wc · oi + bc)∑

yi−1yi
exp(Wc · oi + bc)

(4)

Here, Wc and bc are the weight matrix and the
bias vector, respectively, and they are estimated
using the (yi−1, yi) tag pairs in the gold standard.

3 Experiments

3.1 Datasets
We employ five benchmark datasets in our experi-
ments, where four of them, namely, CTB5, CTB6,
CTB7, and CTB9, are from the Penn Chinese
TreeBank4 (Xue et al., 2005) and the fifth one is

4We obtain the Penn Chinese TreeBank data from the offi-
cial release of Linguistic Data Consortium. The catalog num-
bers for CTB5, CTB6, CTB7, and CTB9 are LDC2005T01,
LDC2007T36, LDC2010T07, and LDC2016T13, respectively.
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Datasets Char Word Sent OOV %

CTB5
Train 805K 494K 18K -
Dev 12K 7K 350 8.1
Test 14K 8K 348 3.5

CTB6
Train 1,056K 641K 23K -
Dev 100K 60K 2K 5.4
Test 134K 82K 3K 5.6

CTB7
Train 1,160K 718K 31K -
Dev 387K 237K 10K 5.5
Test 399K 245K 10K 5.2

CTB9
(general)

Train 2,643K 1,696K 106K -
Dev 210K 136K 10K 2.9
Test 379K 242K 16K 3.1

UD
Train 156K 99K 4K -
Dev 20K 13K 500 12.1
Test 19K 12K 500 12.4

CTB9
(genres)

BC 275K 184K 12K 2.8
BN 483K 287K 10K 5.1
CS 228K 160K 17K 5.5
DF 644K 421K 20K 3.7
MZ 403K 258K 8K 7.5
NW 427K 251K 10K 5.1
SC 430K 304K 44K 4.0
WB 342K 210K 10K 5.3

Table 1: The statistics of all experimental datasets in
terms of character, word and sentence numbers. For
normal splits, OOV % is computed according to the
training set; for each genre in CTB9, OOV % is com-
puted with respect to the union of other seven genres.

the Chinese part of Universal Dependencies (UD)5

(Nivre et al., 2016). The CTB datasets are in simpli-
fied Chinese characters while the UD dataset is in
traditional Chinese. Following Shao et al. (2017),
we convert the UD dataset into simplified Chinese6

before conducting experiments on it.
CTB uses 33 POS tags, and we split CTB5-

CTB9 following previous studies (Wang et al.,
2011; Jiang et al., 2008; Shao et al., 2017). In
addition, because the data in CTB9 come from
eight genres – broadcast conversation (BC), broad-
cast news (BN), conversational speech(CS), dis-
cussion forums (DF), magazine articles (MZ),
newswire (NW), SMS/chat messages (SC), and
weblog (WB) – we also use CTB9 in a cross-
domain study (see Section 3.4). UD uses two POS
tagsets, namely the universal tagset (15 tags) and
language-specific tagset (42 tags for Chinese). We
refer to the corpus with the two tagsets as UD1
and UD2, respectively, and use the official splits
of train/dev/test in our experiments. The statistics
for the aforementioned datasets are in Table 1.

5We use its version 2.4 downloaded from https://
universaldependencies.org/.

6The conversation scripts are from https://github.
com/skydark/nstools/tree/master/zhtools

CTB5 CTB6 CTB7 CTB9 UD

S 20K 23K 24K 41K 7K

K
SCT

POS 22K 25K 27K 46K 7K
Syn. 70K 82K 87K 141K 31K
Dep. 32K 39K 42K 77K 8K

BNP POS 22K 26K 28K 48K 8K
Syn. 69K 81K 85K 136K 29K

Table 2: Numbers of context features (S) and their
corresponding knowledge instances (K) for five bench-
mark datasets, based on the output of SCT and BNP.
Note that the K for the UD dataset follows the CTB
criteria, because SCT and BNP were trained on CTB.

3.2 Implementation

To obtain the aforementioned three types of knowl-
edge, we use two off-the-shelf toolkits, Stanford
CoreNLP Toolkit (SCT)7 (Manning et al., 2014)
and Berkeley Neural Parser (BNP)8 (Kitaev and
Klein, 2018): the former tokenizes and parses
a Chinese sentence, producing POS tags, phrase
structure and dependency structure of the sentence;
the latter does POS tagging and syntactic parsing
on a pre-tokenized sentence. Both toolkits were
trained on CTB data and thus produced CTB POS
tags. To extract knowledge, we firstly use SCT to
automatically segment sentences and then run both
SCT and BNP for POS tagging and parsing. Table
2 shows the size of S and K for all the datasets.

We test the model with three encoders: two of
them, namely Bi-LSTM and BERT9 (Devlin et al.,
2019), are widely used; the third encoder is ZEN10

(Diao et al., 2019), which is a recently released
Chinese encoder pre-trained with n-gram informa-
tion and outperforms BERT in many downstream
tasks. For the Bi-LSTM encoder, we set its hid-
den state size to 200 and use the character embed-
dings released by Shao et al. (2017) to initialize
its input representations. For BERT and ZEN, we
follow their default settings, e.g., 12 layers of self-
attentions with the dimension of 768.

For the two-way attention module, we ran-
domly initialize the embeddings for all context fea-
tures and their corresponding knowledge instances,
where one can also use pre-trained embeddings
(Song et al., 2018; Grave et al., 2018; Zhang et al.,
2019; Yamada et al., 2020) for them. For all the

7We use its version 3.9.2 downloaded from https://
stanfordnlp.github.io/CoreNLP/.

8We download the model from https://github.
com/nikitakit/self-attentive-parser.

9We use the Chinese base model from https://s3.
amazonaws.com/models.huggingface.co/.

10https://github.com/sinovation/ZEN

https://universaldependencies.org/
https://universaldependencies.org/
https://github.com/skydark/nstools/tree/master/zhtools
https://github.com/skydark/nstools/tree/master/zhtools
https://stanfordnlp.github.io/CoreNLP/
https://stanfordnlp.github.io/CoreNLP/
https://github.com/nikitakit/self-attentive-parser
https://github.com/nikitakit/self-attentive-parser
https://s3.amazonaws.com/models.huggingface.co/
https://s3.amazonaws.com/models.huggingface.co/
https://github.com/sinovation/ZEN
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CTB5 CTB6 CTB7 CTB9 UD1 UD2
Seg Joint Seg Joint Seg Joint Seg Joint Seg Joint Seg Joint

SCT 98.02 95.49 96.62 90.85 96.53 92.73 93.63 88.23 80.50* 0.00* 80.50* 36.11*
BNP - 95.50 - 94.43 - 92.95 - 88.09 - 0.00* - 37.16*

Bi-LSTM 97.69 93.73 95.46 90.63 95.46 89.98 96.45 91.80 94.96 88.72 95.01 88.75
+ POS (SCT) 98.07 94.68 96.23 91.04 96.32 91.60 96.75 92.36 94.86 88.90 95.08 88.99
+ Syn. (SCT) 98.03 95.66 96.06 90.97 95.90 91.90 96.57 92.40 94.88 88.87 94.71 88.90
+ Dep. (SCT) 97.84 94.25 95.85 90.70 95.87 91.08 96.63 92.26 94.88 88.93 94.91 89.05
+ POS (BNP) 98.06 95.34 96.46 93.31 96.58 92.87 96.73 93.38 95.02 89.27 94.89 89.17
+ Syn. (BNP) 98.01 94.82 96.08 92.33 96.06 91.04 96.65 92.97 94.48 88.84 94.86 89.20

BERT 98.28 96.03 97.36 94.65 96.78 93.38 97.33 94.40 97.74 94.82 97.70 94.76
+ POS (SCT) 98.77 96.77 97.43 94.82 97.31 94.12 97.75 94.87 98.32 95.60 98.33 95.46
+ Syn. (SCT) 98.75 96.66 97.37 94.73 97.07 93.84 97.67 94.83 98.11 95.43 98.10 95.42
+ Dep. (SCT) 98.65 96.69 97.35 94.87 97.10 93.89 97.67 94.82 98.10 95.41 98.11 95.36
+ POS (BNP) 98.63 96.60 97.34 94.95 97.25 94.21 97.65 94.82 98.16 95.51 98.22 95.23
+ Syn. (BNP) 98.75 96.72 97.39 94.99 97.32 94.28 97.69 94.85 98.25 95.42 98.17 95.18

ZEN 98.61 96.60 97.35 94.70 97.09 93.80 97.64 94.64 98.14 95.15 98.02 95.05
+ POS (SCT) 98.81 96.92 97.45 94.87 97.27 94.20 97.77 94.88 98.33 95.69 98.18 95.49
+ Syn. (SCT) 98.85 96.86 97.42 94.72 97.31 94.32 97.73 94.85 98.17 95.48 98.35 95.50
+ Dep. (SCT) 98.82 96.85 97.38 94.75 97.25 94.22 97.70 94.85 98.27 95.68 98.28 95.32
+ POS (BNP) 98.72 96.83 97.47 95.02 97.24 94.18 97.69 94.82 98.26 95.52 98.22 95.28
+ Syn. (BNP) 98.83 96.83 97.44 94.95 97.25 94.18 97.67 94.86 98.22 95.49 98.20 95.45

Table 3: Experimental results (the F-scores for segmentation and joint tagging) of TWASP using different encoders
with and without auto-analyzed knowledge on the five benchmark datasets. “Syn.” and “Dep.” refer to syntactic
constituents and dependency relations, respectively. The results of SCT and BNP are also reported as references,
where * marks that the segmentation and POS tagging criteria from the toolkits and the UD dataset are different.

models, we set the maximum character length of
the input sequence to 300 and use negative log-
likelihood loss function. Other hyper-parameters
of the models are tuned on the dev set and the
tuned models are evaluated on the test set for each
dataset (each genre for CTB9). F-scores for word
segmentation and the joint CWS-POS tags are used
as main evaluation metrics11 in all experiments.

3.3 Overall Performance

In our main experiment, we run our TWASP on the
five benchmark datasets using the three encoders,
i.e., Bi-LSTM, BERT, and ZEN. The results on the
F-scores of word segmentation and joint CWS and
POS tagging are in Table 3, which also includes the
performance of the baselines without attention and
the two toolkits (i.e., SCT and BNP). The results of
SCT and BNP on the UD dataset are bad because
they were trained on CTB, which used different
segmentation and POS tagging criteria.

There are several observations. First, for all
encoders, the two-way attentions provide consis-
tent enhancement to the baselines with different
types of knowledge. Particularly, although the
baseline model is well-performed when BERT (or
ZEN) serves as the encoder, the attention mod-

11We use the evaluation script from https://github.
com/chakki-works/seqeval.

ule is still able to further improve its performance
with the knowledge produced by the toolkits even
though the toolkits have worse-than-baseline re-
sults for the joint task. Second, among different
types of knowledge, POS labels are the most ef-
fective ones that help the joint task. For instance,
among BERT-based models, the one enhanced by
POS knowledge from SCT achieves the best per-
formance on most datasets, which is not surpris-
ing because such knowledge matches the outcome
of the task. In addition, for BERT-based models
enhanced by knowledge from BNP (i.e., BERT +
POS (BNP) and BERT + Syn. (BNP)), syntactic
constituents provide more improvement than POS
labels on all CTB datasets. This observation could
be explained by that BNP is originally designed
for constituency parsing with CTB criteria; the syn-
tactic constituents are complicated while effective
when they are accurate. Third, while SCT and BNP
were trained on CTB, whose tagset is very different
from the two tagsets for UD, TWASP still outper-
forms the baselines on UD with the knowledge
provided by SCT and BNP, indicating that syntac-
tic knowledge is useful even when it uses different
word segmentation and POS tagging criteria.

Table 4 shows the results of our best models
(i.e. BERT and ZEN with POS (SCT)) and pre-
vious studies on the same datasets. Our approach

https://github.com/chakki-works/seqeval
https://github.com/chakki-works/seqeval
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CTB5 CTB6 CTB7 CTB9 UD1 UD2
Seg Joint Seg Joint Seg Joint Seg Joint Seg Joint Seg Joint

Jiang et al. (2008) 97.85 93.41 - - - - - - - - - -
Kruengkrai et al. (2009) 97.87 93.67 - - - - - - - - - -
Sun (2011) 98.17 94.02 - - - - - - - - - -
Wang et al. (2011) 98.11 94.18 95.79 91.12 95.65 90.46 - - - - - -
Qian and Liu (2012) 97.85 93.53 - - - - - - - - - -
Shen et al. (2014) 98.03 93.80 - - - - - - - - - -
Kurita et al. (2017) 98.41 94.84 - - 96.23 91.25 - - - - - -
Shao et al. (2017) 98.02 94.38 - - - - 96.67 92.34 95.16 89.75 95.09 89.42
Zhang et al. (2018) 98.50 94.95 96.36 92.51 96.25 91.87 - - - - - -

BERT + POS (SCT) 98.77 96.77 97.43 94.82 97.31 94.12 97.75 94.87 98.32 95.60 98.33 95.46
ZEN + POS (SCT) 98.81 96.92 97.45 94.87 97.27 94.20 97.77 94.88 98.33 95.69 98.18 95.49

Table 4: Comparison (in F-scores of word segmentation and joint tagging) of TWASP (with BERT or ZEN encoder)
with previous studies. Cells with “-” refer to the results are not reported or they are not applicable.

outperforms previous studies on the joint task and
achieves new state-of-the-art performance on all
datasets. While some of the previous studies
use auto-analyzed knowledge (Wang et al., 2011;
Zhang et al., 2018), they regard such knowledge as
gold reference and consequently could suffer from
errors in the auto-analyzed results. In contrast, our
proposed model is able to selectively model the
input information and to discriminate useful knowl-
edge instances through the two-way attentions.

3.4 Cross-Domain Performance
Domain variance is an important factor affecting
the performance of NLP systems (Guo et al., 2009;
McClosky et al., 2010; Song and Xia, 2013). To
further demonstrate the effectiveness of TWASP,
we conduct cross-domain experiments on the eight
genres of CTB9 using BERT and ZEN as the base-
line and their enhanced version with POS knowl-
edge from SCT. In doing so, we test on each genre
with the models trained on the data from all other
genres. The results on both segmentation and the
joint task are reported in Table 5, where the SCT
results are also included as a reference.

The comparison between the baselines and
TWASP with POS knowledge clearly shows the
consistency of performance improvement with two-
way attentions, where for both BERT and ZEN,
TWASP outperforms the baselines for all genres
on the joint labels. In addition, similar to the ob-
servations from the previous experiment, both ac-
curate and inaccurate POS knowledge are able to
help the joint task. For example, although the SCT
results on several genres (e.g., CS, DF, SC) are
much worse than of the BERT baseline, the POS
labels produced by SCT can still enhance TWASP
on word segmentation and joint tagging with the
proposed two-way attention module.

4 Analysis

4.1 The Effect of Two Attention Ways

In the first analysis, we compare our two-way at-
tention with normal attention. For normal attention,
we experiment three ways of incorporating context
features and knowledge: (1) using context features
and knowledge together in the attention, where all
features or knowledge instances are equally treated
in it; (2) using context features only; and (3) using
knowledge only. We run these experiments with
BERT encoder and POS knowledge from SCT on
CTB5 and report the results in Table 6. Overall,
the two-way attentions outperform all three set-
tings for normal attention, which clearly indicates
the validity of using two attention ways for fea-
tures and knowledge, i.e., compared to (1), as well
as the advantage of learning from both of them,
i.e., compared to (2) and (3). Interestingly, in the
three settings, (3) outperforms (1), which could be
explained by that, with normal attention, mixed
feature and knowledge instances in it may make it
difficult to weight them for the joint task.

There are other methods for using both con-
text features and knowledge in a neural frame-
work, such as key-value memory networks (kvMN)
(Miller et al., 2016), which is demonstrated to im-
prove CWS by Tian et al. (2020). Thus we com-
pare our approach with kvMN, in which context
features are mapped to keys and knowledge to val-
ues. We follow the standard protocol of the kvMN,
e.g., addressing keys by Si and reading values from
Ki through the corresponding knowledge for each
key, computing weights from all key embeddings,
and outputting the weighted embeddings from all
values. The result from the kvMN is reported at
the last row of Table 6, where its performance is
not as good as the two-way attentions, and even
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Genre SCT BERT BERT+POS ZEN ZEN+POS
Seg Joint Seg Joint Seg Joint Seg Joint Seg Joint

BC 96.27 93.55 96.29 92.08 96.38 92.34 96.48 92.25 96.63 92.41
BN 96.98 93.98 96.93 93.73 97.20 94.02 97.05 93.91 97.21 94.14
CS 89.83 81.93 95.17 89.18 95.14 89.46 95.10 89.24 95.87 89.67
DF 91.34 84.28 96.79 92.02 96.44 92.44 96.33 92.11 96.55 92.51
MZ 95.69 91.99 95.62 91.97 95.83 92.17 95.69 92.00 95.78 92.18
NW 97.41 94.75 97.55 94.44 97.49 94.64 97.49 94.51 97.57 94.70
SC 84.87 76.55 95.97 91.13 96.27 91.77 96.09 91.47 96.38 91.85
WB 95.99 92.86 95.09 89.59 95.11 89.85 95.10 89.74 95.35 90.10

Table 5: Experimental results (the F-scores for word segmentation and joint tagging) from baselines and TWASP
with different encoders on eight genres of CTB9. The incorporated knowledge is the POS labels from SCT.

Ways Seg Joint
Feature Knowledge F ROOV F
√ √

98.55 87.28 96.62√
× 98.67 87.38 96.50

×
√

98.71 88.17 96.69

Two-way Attentions 98.77 88.13 96.77

Key-value Memory 98.62 88.51 96.58

Table 6: Performance comparison among different
ways of knowledge integration, including normal atten-
tion (with respect to what knowledge type is used), the
two-way attention, and key-value memory networks.

worse than using normal attention with setting (3).
The reason could be straightforward: the output
of kvMN is built upon value (knowledge) embed-
dings and therefore information from key (context
feature) embeddings does not directly contribute to
it other than providing weights for the value. As a
result, kvMN acts in a similar yet inferior12 way of
setting (3) where only knowledge is used.

4.2 Knowledge Ensemble

Since every type of knowledge works well in our
model, it is expected to investigate how the model
performs when multiple types of knowledge are
used together. To this end, we run experiments
on CTB5 to test on our BERT-based TWASP with
knowledge ensemble, where two ensemble strate-
gies, i.e., averaging and concatenation, are applied
with respect to how ai for each knowledge type
is combined with others. The results are reported
in Table 7. In this table, the first seven rows (ID:
1-7) indicate that different types of knowledge are

12The “inferior” is explained by that, in kvMN, the value
weights are inaccurate because they are computed with respect
to the contribution of keys rather than knowledge instances.

ID SCT BNP Joint F
POS Syn. Dep. POS Syn.

∑ ⊕
1

√ √
96.79 96.80

2
√ √

96.78 96.81
3

√ √
96.79 96.80

4
√ √ √

96.82 96.87

5
√ √

96.76 96.81

6
√ √

96.81 96.83
7

√ √ √
96.82 96.84

8
√ √ √ √ √

96.87 96.90

Table 7: Comparison of different knowledge ensemble
results, which are presented by the joint tagging F -
scores from our BERT-based TWASP on CTB5.

∑
and

⊕
refer to averaging and concatenation of at-

tentions from different knowledge types, respectively.
As a reference, the best result on CTB5 for BERT-
based model without knowledge ensemble is 96.77%
achieved by BERT + POS (SCT) (see Table 3).

combined according to whether they come from
the same toolkit (ID: 1-5) or belong to the same cat-
egory (ID: 6 and 7); and the last row (ID: 8) is for
the case that all types of knowledge are combined.

There are several observations. First, compared
to only using one type of knowledge (refer to Table
3), knowledge ensemble improves model perfor-
mance where more knowledge types contribute to
better results. The best model is thus obtained
when all knowledge (from each toolkit and from
both toolkits) are used. Second, knowledge in the
same type from different toolkits may complement
to each other and thus enhance model performance
accordingly, which is confirmed by the results from
the models assembling POS (or Syn+Dep) informa-
tion from both SCT and BNP. Third, for different
ensemble strategies, concatenation tends to per-
form better than averaging, which is not surprising
since concatenation actually turns the model into a
multi-way structure for knowledge integration.
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Figure 4: Comparison of joint tagging results between
BERT and BERT+Dep (SCT) on an example sentence.

4.3 Case Study

When the toolkit provides accurate knowledge, it
is not surprising that our two-way attention model
would benefit from the auto-analyzed knowledge.
Interestingly, even when the toolkit provides in-
accurate output, our model might still be able to
benefit from such output. Figure 4 shows such an
example, where our system uses BERT+Dep using
SCT and the baseline system is BERT without two-
way attention. The sentence contains an ambigu-
ity character bigram “马上”, which has two possi-
ble interpretations, “马上 AD” (immediately) and
“马 NN/上 LC” (on the horse). The second one is
correct, yet the baseline tagger chooses the former
because “马上” (immediately) is a very common
adverb. Although SCT also chooses the wrong seg-
mentation and thus has an incorrect dependency
structure, our system is still able to produce cor-
rect segmentation and POS tags. One plausible
explanation for this is that the inaccurate depen-
dency structure includes an advmod link between
“马上” (immediately) and “很好”(very good). Be-
cause such a dependency pair seldom appears in
the corpus, the attention from such knowledge is
weak and hence encourages our system to choose
the correct word segmentation and POS tags.

5 Related Work

There are basically two approaches to CWS and
POS tagging: to perform POS tagging right af-
ter word segmentation in a pipeline, or to conduct
the two tasks simultaneously, known as joint CWS
and POS tagging. In the past two decades, many
studies have shown that joint tagging outperforms
the pipeline approach (Ng and Low, 2004; Jiang
et al., 2008, 2009; Wang et al., 2011; Sun, 2011;
Zeng et al., 2013). In recent years, neural methods
started to play a dominant role for this task (Zheng
et al., 2013; Kurita et al., 2017; Shao et al., 2017;
Zhang et al., 2018), where some of them tried to
incorporate extra knowledge in their studies. For

example, Kurita et al. (2017) exploited to model
n-grams to improve the task; Shao et al. (2017) ex-
tended the idea by incorporating pre-trained n-gram
embeddings, as well as radical embeddings, into
character representations. Zhang et al. (2018) tried
to leverage the knowledge from character embed-
dings, trained on an automatically tagged corpus
by a baseline tagger. Compared to these previous
studies, TWASP provides a simple, yet effective,
neural model for joint tagging, without requiring a
complicated mechanism of incorporating different
features or pre-processing a corpus.

6 Conclusion

In this paper, we propose neural approach with a
two-way attention mechanism to incorporate auto-
analyzed knowledge for joint CWS and POS tag-
ging, following a character-based sequence label-
ing paradigm. Our proposed attention module
learns and weights context features and their cor-
responding knowledge instances in two separate
ways, and use the combined attentions from the
two ways to enhance the joint tagging. Experimen-
tal results on five benchmark datasets illustrate the
validity and effectiveness of our model, where the
two-way attentions can be integrated with differ-
ent encoders and provide consistent improvements
over baseline taggers. Our model achieves state-
of-the-art performance on all the datasets. Over-
all, this work presents an elegant way to use auto-
analyzed knowledge and enhance neural models
with existing NLP tools. For future work, we plan
to apply the same methodology to other NLP tasks.
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