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Abstract

Unsupervised machine translation (MT) has
recently achieved impressive results with
monolingual corpora only. However, it is
still challenging to associate source-target sen-
tences in the latent space. As people speak
different languages biologically share simi-
lar visual systems, the potential of achiev-
ing better alignment through visual content
is promising yet under-explored in unsuper-
vised multimodal MT (MMT). In this pa-
per, we investigate how to utilize visual con-
tent for disambiguation and promoting latent
space alignment in unsupervised MMT. Our
model employs multimodal back-translation
and features pseudo visual pivoting in which
we learn a shared multilingual visual-semantic
embedding space and incorporate visually-
pivoted captioning as additional weak supervi-
sion. The experimental results on the widely
used Multi30K dataset show that the proposed
model significantly improves over the state-of-
the-art methods and generalizes well when im-
ages are not available at the testing time.

1 Introduction

Neural machine translation (Kalchbrenner and
Blunsom, 2013; Sutskever et al., 2014) has
achieved near human-level performance (Wu et al.,
2016). However, its effectiveness strongly relies
on the availability of large-scale parallel corpora.
Unfortunately, preparing the parallel data remains
a challenge as there are more than 6,500 languages
in the world, and recruiting translators with bilin-
gual or multilingual knowledge to cover all those
languages is impractical.

As a result, developing methods alleviating the
need of well-annotated large parallel corpora has
recently attracted increasing attention in the com-
munity. These methods fall into two broad cate-
gories. The first type of methods use a third lan-
guage as the pivot (Firat et al., 2016; Chen et al.,
2017; Cheng et al., 2017; Johnson et al., 2017)

to enable zero-resource translation. Although the
progress is encouraging, pivoting with a third lan-
guage still demands bilingual knowledge for col-
lecting large-scale parallel source-pivot and pivot-
target corpora. The second type of methods explore
unsupervised approaches (Conneau et al., 2018a;
Artetxe et al., 2018; Lample et al., 2018a) have
recently achieved impressive translation quality.
These methods rely only on monolingual data and
back-translation (Sennrich et al., 2016a). However,
as discussed in (Lample et al., 2018b), the align-
ment of source-target sentences is uncertain and
highly subject to proper initialization.

Using visual content for unsupervised MT (Chen
et al., 2018; Su et al., 2019) is a promising solu-
tion for pivoting and alignment based on its avail-
ability and feasibility. Abundant multimodal con-
tent in various languages are available online (e.g.
Instagram and YouTube). It is also easier to re-
cruit monolingual annotators to describe an image
than to find multilingual translators to translate
sentences. Importantly, visual content is eligible
to improve the alignments in the language latent
spaces since the physical visual perception is simi-
lar among people speaking different languages (e.g.
similar “blue car” for a German and a French).

Based on these insights, we propose a novel un-
supervised multimodal MT framework incorporat-
ing images as pseudo pivots promoting latent space
alignment. In addition to use features of visual
objects for multimodal back-translation, we align
a shared multilingual visual-semantic embedding
(VSE) space via leveraging disjoint image-sentence
pairs in different languages. As illustrated in Fig-
ure 2, for sentences approximately pivoted by sim-
ilar images (src-img-tgt), drawing embeddings of
corresponding image-sentence pairs closer results
in better alignments of semantically equivalent sen-
tences in the language latent spaces. Inspired by
back-translation, we further explore another pseudo
pivoting strategy, which approximates multilingual
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sentence pairs (src-img-tgt) conditioned on a real
image via captioning. Instead of using annotation
of images for pivoting as in (Chen et al., 2018), we
generate sentences in two languages pivoted on the
real image, and then approximately pairing them as
weak supervision for training unsupervised MT sys-
tem. This approach is analogous to a cross-modal
version of back-translation.

We make the following contributions: (1) Build-
ing a unified view of employing visual content for
pseudo pivoting. (2) We learn and improve the
alignments in the shared multilingual multimodal
embedding space for unsupervised MMT with dis-
joint image-text pairs in different languages. (3)
Our model achieves state of the art on Multi30K
and generalizes well to the text-only scenario.

2 Background

Neural Machine Translation Typical NMT mod-
els are based on the encoder-decoder framework
with attention (Bahdanau et al., 2015). Let x =
(x1, · · · , xN ) denotes a source sentence and y =
(y1, · · · , yM ) denotes a target sentence, where
(x,y) ∈ (X ,Y). The encoder-decoder model
learns to estimate the following likelihood from
the source sentence to the target sentence:

px→y(y|x) =
M∏
i=1

p(yi|y<i,x) (1)

When a parallel corpus is available, the max-
imum likelihood estimation (MLE) is usually
adopted to optimize the (source to target language)
NMT model by minimizing the following loss:

LMT
x→y = E(x,y)∼(X ,Y) [−log px→y(y|x)] (2)

Among all encoder-decoder models, the Trans-
former (Vaswani et al., 2017) architecture recently
achieves state-of-the-art translation quality. Instead
of using recurrent or convolutional operations, it fa-
cilitates multi-head self-attention (Lin et al., 2017).
In this paper, we choose the Transformer as the
underlying architecture for both the translation and
the captioning modules.
Unsupervised Machine Translation While con-
ventional MT systems rely on the availability of a
large parallel corpus, translation with zero-resource
(unsupervised MT) (Lample et al., 2018a; Artetxe
et al., 2018; Lample et al., 2018b) has drawn in-
creasing research attention. Only monolingual sen-
tences are presented at the training and validation
phase, i.e., only x ∈ X and y ∈ Y are available.

Successful unsupervised MT systems share sev-
eral common principles. First, they require the
pre-training step to initialize the model and estab-
lish strong monolingual language models properly.
For example, XLM (Conneau and Lample, 2019)
utilizes the masked language model objective in
BERT (Devlin et al., 2019). MASS (Song et al.,
2019) utilizes a span-based sequence-to-sequence
masking objective for language model pre-training.

Second, these systems transform the unsuper-
vised problem into a weakly or self-supervised
one by automatically generating pseudo sentence
pairs via back-translation (Sennrich et al., 2016a).
The idea behind can be analogous to the cycle-
consistency objective in CycleGAN (Zhu et al.,
2017) for image-image translation with unpaired
data. Specifically, let us denote by h∗(y) =
(x̂1, · · · , x̂N ) the sentence in the source lan-
guage inferred from y ∈ Y such that h∗(y) =
argmax py→x(x|y). Similarly, let us denote by
g∗(x) = (ŷ1, · · · , ŷM ) the sentence in the tar-
get language inferred from x ∈ X such that
g∗(x) = argmax px→y(y|x). Then the “pseudo”
parallel sentences (h∗(y),y) and (x, g∗(x)) can be
further used to train two two MT models (X → Y
and Y → X ) by minimizing the following back-
translation loss:

LBT
x↔y = Ex∼X [−log py→x(x|g∗(x))]

+ Ey∼Y [−log px→y(y|h∗(y))]
(3)

Although reinforcement learning-based ap-
proaches (He et al., 2016a) and Gumbel-softmax
reparametrization (Maddison et al., 2017) have
been used to handle back-propagation thorough
non-differentiable “argmax” predictions. in this pa-
per, we do not back-propagate through h∗(y) and
g∗(x) to simplify the training process.

3 Unsupervised Multimodal Machine
Translation

As illustrated in Figure 1, our model is composed
of seven modules: Two encoder-decoder pairs for
translation, two decoders for captioning, and one
shared visual encoder. In this section, we first detail
our basic MMT model architecture and the unsu-
pervised setup. Then we introduce pseudo visual
pivoting: learning multilingual VSE and pivoted
captioning.

3.1 Multimodal MT
Multimodal machine translation (Specia et al.,
2016) (MMT) considers additional images as a
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Encx
a motorcyclist goes down 
a snow-covered hill Decy Ency

ein motorradfahrer fährt
einen schneebedeckten … Decx

a man on a motorcycle 
down a snow hill

Encv Capy Capx
a man on a motorcycleein mann fährt motorrad

Encv

Unsupervised Multimodal MT (Sec 3.2)

Multilingual VSE 
(Sec 3.3) Image Captioning for 

Pseudo Pivoting (Sec 3.4)

Figure 1: The proposed model structure (English↔German). We incorporate visual objects for unsupervised
multimodal MT and improve the language latent space alignment with pseudo visual pivoting (§3.3-§3.4).

complementary information source for MT. An
image z and the description in two languages
form a triplet (x,y, z) ∈ (X ,Y,Z). The Trans-
former encoder reads the source sentence and en-
codes it with hierarchical self-attention into hx =
{hx

1 , · · · ,hx
N},hx

i ∈ Rd, where d is the dimension
of the embedding space. The visual encoder en-
codes the image into hz = {hz

1, · · · ,hz
K},hz

i ∈
Rd,Kmax = 36. Most previous work (Chen et al.,
2018; Su et al., 2019) use 2D (K = 14×14) feature
maps of ImageNet pre-trained ResNet (He et al.,
2016b). In contrast, we utilize the regional features
of K salient visual objects in an image extracted
by Faster-RCNN (Ren et al., 2015) and a 1-layer
MLP as the encoder to encode visual objects.

Various attention strategies for sequence-to-
sequence learning have been addressed in (Li-
bovický and Helcl, 2017). Our model employs
the hierarchical multi-head multimodal attention
for decoding. For decoding at time stamp i, the tex-
tual attention Attn(hy

i ,h
x) computes the context

vector ci =
∑

j αjh
x
j via a attention-based align-

ment αj = Align(hy
i , hx

j ), where
∑

j αj = 1 and
hy
i is the decoder state. Essentially, the one-head

attention in Transformer is implemented as ci =
softmax(Qi(K

x)>/
√
d)Vx where {Q,Kx,Vx}

are the packed d-dimensional Query, Key, Value
vectors, which are the mapped and packed version
of {hy

i ,h
x,hx}. For decoding with encoded visual

and textual inputs, we utilize multimodal attention
to compute the context vector ci:

cxi = Attn(hy
i−1,h

x) + λvAttn(hy
i−1,h

z) (4)

In practice we set λv = 1.0. Our multimodal de-
coder models the likelihood to predict the next to-
ken as:

p(yi|y<i,x, z) = softmax(f(ci, yi−1,h
y
i−1),

(5)
where f(.) denotes the aggregated non-linear fea-
ture mapping in Transformer.

3.2 Unsupervised Learning
Unsupervised multimodal MT (Nakayama and
Nishida, 2017; Chen et al., 2018; Su et al., 2019)
poses a new yet challenging problem. On both
the source and target sides, only non-overlapping
monolingual multimodal data are presented for
training and validation. Specifically, the data avail-
able are: (x, zx) ∈ (X ,Z), (y, zy) ∈ (Y,Z), such
that {x} ∩ {y} = φ, {zx} ∩ {zy} = φ. Note that
there are no parallel translation pairs available (un-
supervised), and the images are mutually exclusive
for different languages.

For multimodal back-translation, the gener-
ated pseudo target sentence conditioned on the
source sentence and image can be re-written
as g∗(x, zx) = argmax pxz→y(y|x, zx), where
pxz→y(y|x, z) =

∏M
i=1 p(yi|y<i,x, z). Similar

for pyz→x(x|y, z) and h∗(y, zy). For unsupervised
multimodal MT, the multimodal back-translation
objective can be extended as:

LMBT
x↔y = E(x,zx)

[
-log pyz→x (x|g∗(x, zx), zx)

]
+ E(y,zy)

[
-log pxz→y

(
y|h∗(y, zy), zy)

)]
(6)

We simplify the notation of expectation for clarity.
Aligning the latent spaces of the source and tar-

get languages without supervision is challenging,
as discussed in (Lample et al., 2018b). However, as
people speak different languages biologically share
similar visual systems, we envision that the shared
visual space can serve as the pivot for alignment.
Unlike most previous work (Chen et al., 2018; Su
et al., 2019) treating images merely as a feature, we
propose two visual pivoting approaches: (1) Align-
ing the multilingual VSE space; (2) Image pseudo
pivoting via captioning. As illustrated in Figure 2,
for (1), we use images as the approximate pivots
connecting real non-parallel sentences. (src-img-
tgt.) In (2), for each pivoting real image, we gener-
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a dog running in a field

ein hund läuft in einer wiese

a biker with a white helmet is in midair.

ein mann fährt fahrrad

a man ride a bike

ein mann der 
stunts auf einem
fahrrad ausführta man doing stunts on a bike

a little boy is going to throw a ball on the beach

a little toddler is 
throwing a volleyball

ein kleines kleinkind
wirft einen volleyball

Alignment in the Multilingual VSE space Pivoted Captioning for Paired-TranslationPivoted Captioning for Back-Translation

Figure 2: Pseudo visual pivoting: (1) multilingual VSE (src-img-tgt, in fact src-img1, tgt-img2), and (2) pivoted
captioning (src-img-tgt). The italic items do not exist and are approximated (pseudo). (src, img, tgt) is colored
in (green, yellow, blue). Solid red and black lines indicate captioning and translation without updates. Encoder-
decoder are updated with dashed lines to improve the alignments in the multilingual multimodal embedding space.

ate captions in both languages to construct “pseudo”
source-target sentence pairs. (src-img-tgt), where
the italic item is “pseudo”. We collectively term
the proposed approach pseudo visual pivoting.

3.3 Multilingual Visual-Semantic Embedding
We posit that for X ,Y,Z , the two language spaces
X ,Y could be properly associated by respectively
aligning two monolingual VSE spaces X ↔ Z and
Y ↔ Z . We leverage the contrastive objective in
cross-modal retrieval (Kiros et al., 2014; Huang
et al., 2019b) for aligning multimodal inputs in the
shared VSE space where the embeddings are close
if they are semantically associated or paired.

Specifically, we generalize the fine-grained
(object-level and token-level), monolingual textual-
to-visual, and visual-to-textual attention (Lee et al.,
2018; Huang et al., 2019c) into the multilingual
setup. For fine-grained image-sentence alignment,
let sij = cos(hx

i ,h
z
j ) denotes the cosine similarity

between the i-th encoded token and the j-th en-
coded visual object. The image-sentence similarity
can be measured by averaging the cosine similar-
ities between the visually-attend sentence embed-
dings and the visual embeddings of the objects. The
visually-attended sentence embeddings hzx are
the weighted combination of the encoded tokens
hx. Precisely, we compute hzx

j =
∑N

i=1 αijh
x
i ,

where j = 1 · · ·K and αij = softmaxi(sij). Let
us denote by S(x, z) = 1

2K

∑K
j=1 cos(hzx

j ,h
z
j ) +

1
2N

∑N
i=1 cos(hxz

i ,h
x
i ) as the image-sentence sim-

ilarity, the contrastive triplet loss encouraging
image-sentence alignment in the VSE space can be
written as:

Lc(x, z) = max
x̃

[
γ − S(x, z) + S(x̃, z)

]
+

+ max
z̃

[
γ − S(x, z) + S(x, z̃)

]
+
,

(7)

where [.]+ is the hinge function, and x̃ and z̃ are
the non-paired (negative) instances for x and z.
Intuitively, when the loss decreases, the matched
images and sentences will be drawn closer down
to a margin γ than the hardest non-paired ones.
Formally, we minimizing the following objective
for cross-modal alignments in the two VSE spaces:

LV SE
x,y,z = E(x,zx)

[
Lc(x, zx)

]
+E(y,zy)

[
Lc(y, zy)

]
(8)

3.4 Image Captioning for Pseudo Pivoting

Inspired by back-translation with monolingual cor-
pora, we propose a novel cross-modal approach to
generate weakly-supervised pairs to guide language
space alignment for unsupervised MMT. Precisely,
we leverage image captioning to synthesize pseudo
sentence pairs (pivoted and conditioned on the im-
age) for back-translation and paired-translation.
Image Captioning Image captioning models are
akin to MT models besides the non-sequential vi-
sual encoder. For example, an image-to-source
captioning model estimates the likelihood as
pz→x(x|z) =

∏N
i=1 p(xi|x<i, z), where z is the

encoded image. Essentially, the captioning model
learns to minimize the following loss:

LCAP
z→x = E(zx,x) [−log pz→x(x|zx)] (9)

As illustrated in Figure 2, we incorporate two
captioning modelsZ → X andZ → Y to generate
additional “pseudo” parallel sentences pivoted on
the image as additional weak supervision to better
align language latent spaces in unsupervised MMT.
For example, with Image→ English and Image→
German, the generated pseudo (English, German)
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pair is then pivoted on the Image. Learning cap-
tioning models is practical as it is easier to collect
large-scale image-text pairs than translation pairs.
We pre-train these captioning models and use them
to generate sentences in two languages depicting
the same image, i.e., c∗x(zx) = argmaxpz→x(x|zx)
and c∗y(zx) = argmaxpz→y(y|zx). The pivoted
captions then enable the following two objectives:
Pivoted Captioning for Back-Translation We
utilize the synthetic multilingual captions (i.e.,
c∗x(zx), c

∗
y(zx) from the source images and c∗x(zy),

c∗y(zy) from the target images) to reversely recon-
struct the synthetic captions from their translations
in both directions. Formally, we compute the fol-
lowing caption-based back-translation loss:

LCBT
x↔y = Ezx

[
-log pyz→x

(
c∗x(zx)|g∗(c∗x(zx),zx),zx

)
-log pxz→y

(
c∗y(zx)|g∗(c∗y(zx),zx),zx

)]
+Ezy

[
-log pyz→x

(
c∗x(zy)|h∗(c∗x(zy),zy),zy

)
-log pxz→y

(
c∗y(zy)|h∗(c∗y(zy),zy),zy

)]
(10)

Pivoted Captioning for Paired-Translation With
the synthetic “pseudo” paired (source, target) cap-
tions pivoted on a image (e.g. (c∗y(zx), c

∗
x(zx)), the

caption-based paired-translation loss is defined as:

LCPT
x↔y = Ezx

[
-log pxz→y(c

∗
y(zx)|c∗x(zx), zx)

]
+ Ezy

[
-log pyz→x(c

∗
x(zy)|c∗y(zy), zy)

]
(11)

Note that similar to the text back-translation, for
LCPT
x↔y and LCBT

x↔y , we do not back-prop through
the captioning step. For optimization, we sample
mini-batches and minimizing the following loss:

L = LMBT
x↔y + LV SE

x,y,z + LCBT
x↔y + LCPT

x↔y (12)

Here we drop the weights w of each loss for
clarity. In practice, all the weights are set to 1.0
except for wCPT where we employ a decreasing
learning scheduler specified in the next section.

4 Experiments and Results

We first describe the implementation details and
the experimental setup. Then we compare our ap-
proach with baselines with detailed analysis.

4.1 Dataset and Preprocessing
We conduct experiments on the Multi30K (Elliott
et al., 2016) dataset, the benchmark dataset for mul-

timodal MT. It contains 29K training, 1K valida-
tion, and 1K testing images. Each image has three
descriptions in English/German/French, which are
translations of each other.

To ensure the model never learn from parallel
sentences, we randomly split Multi30K training
and validation sets in half for one language and use
the complementary half for the other. The resulting
M30k-half are two corpora with non-overlapping
14,500 training and 507 validation image-sentence
pairs, respectively.

For text pre-processing, we use Moses (Koehn
et al., 2007) scripts for tokenization and apply
the Byte Pair Encoding (BPE) (Sennrich et al.,
2016b) from XLM. To identify and extract fea-
tures of visual objects in images, we use the Faster-
RCNN (Ren et al., 2015) model in (Anderson et al.,
2018) to detect up to 36 salient visual objects per
image and extract their corresponding 2048-dim
regional features.

4.2 Implementation

We use Transformer as the underlying architecture
for the translation and captioning modules. Each
encoder/decoder of the translator is with 6-layer
stacked Transformer network, 8 heads, 1024 hid-
den units, and 4096 feed-forward filter size. The
captioner is a 6-layer Transformer decoder with
the same configuration. The visual encoder is a 1-
layer MLP which maps visual feature to the shared
1,024-dim embedding space then adds the posi-
tional encoding to encode spatial locations (nor-
malized top-left and bottom-right coordinates) of
visual objects. Our implementation is based on the
codebase of XLM and MASS.

4.3 Experimental Details

We respectively conduct unsupervised MMT exper-
iments on Multi30K-half for two language pairs:
English-French and English-German.
Pre-Training Pre-training is a critical step for un-
supervised MT. We follow the setup in UMMT (Su
et al., 2019) for a fair comparison. For each lan-
guage, we create a text-only pre-training set by
combining the shuffled first 10 million sentences of
the WMT News Crawl datasets from 2007 to 2017
with 10 times of M30k-half, resulting in a text-only
dataset with 10.145 million unparalleled sentences
in English, French, German respectively.

For text pre-training, we leverage the script
and the masked seq-to-seq objective proposed in
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MASS, which randomly masks a span in a sen-
tence then encourages the model to decode and
reconstruct the masked sequence as the monolin-
gual language model pre-training. More details can
be found in the original paper. Note that there is no
fine-tuning (back-translation) on WMT for a fair
comparison with other baselines.

For multimodal pre-training of the caption-
ing modules, we use the out-of-domain MS-
COCO (Lin et al., 2014) dataset. We randomly
split the training set into two disjoint subsets. Each
set contains 56,643 images and 283,215 sentences.
We use the translate-train strategy as in XNLI (Con-
neau et al., 2018b). We leverage Google Translate
to translate one set of English sentences into French
and German. We pre-train the captioning mod-
ules with Eq. 9 and fix them during fine-tuning to
avoid overfitting. Note that the captioning modules
are trained on non-parallel sentences with disjoint
image subsets, which implies no overlap between
English-German or English-French sentences.
Fine-tuning on Multi30K-half We fine-tune on
the training set of Multi30K-half for 18 epochs. We
train our model with the Adam optimizer (Kingma
and Ba, 2014) with a linear warm-up and a learn-
ing rate varying from 10−7 to 10−5. We apply a
linearly decreasing weight from 1.0 to 0.1 at 10-th
epoch for wCPT as we empirically observe that
the generated captions are relatively too noisy to
serve as good pseudo pairs in the later stage of
training. The margin γ in VSE is set to 0.1. Other
hyper-parameters in Transformer follow the default
setting in MASS. We use 4 Titan Xp GPUs with
1,000 tokens in each mini-batch for training.
Evaluation and Model selection For evaluation,
we report BLEU scores by multi-bleu.pl1 in Moses
and METEOR2 scorea on the Multi30K testing set.

For model selection without a parallel validation
corpus, we consider the unsupervised criterion pro-
posed in (Lample et al., 2018a) based on the BLEU
scores of “round-trip” translations (source→ tar-
get→ source and target→ source→ target) which
have been empirically shown to correlate well with
the testing metrics.

4.4 Baseline Models
We compare recent unsupervised text-only and mul-
timodal MT baselines listed in the following: (1)
MUSE (Conneau et al., 2018a) is a word-to-word

1https://github.com/moses-smt/mosesdecoder/blob/master-
/scripts /generic/multi-bleu.perl

2https://github.com/cmu-mtlab/meteor

MT model with pre-trained Wikipedia embeddings.
(2) UNMT (Lample et al., 2018a) sets the tone of
using denoising autoencoder and back-translation
for unsupervised MT. (3) XLM (Conneau and Lam-
ple, 2019) deploys masked language model from
BERT. (4) MASS (Song et al., 2019) uses a masked
seq-to-seq pre-training objective, achieves the cur-
rent state-of-the-art performance in text-only unsu-
pervised MT. (5) Game-MMT (Chen et al., 2018) is
a reinforcement learning-based unsupervised MMT.
(6) UMMT (Su et al., 2019) use visual feature
for denoising autoencoder and back-translation.
UMMT is the current state of the art in unsuper-
vised MMT. We either use the reported scores in the
original papers or use their best scripts with their
pre-trained language models publicly available for
fine-tuning on Multi30K-half.

4.5 Main Results: Unsupervised MMT

4.5.1 Comparison with the Baseline Models

Table 1 presents the benchmark results with other
state-of-the-art unsupervised MT and MMT mod-
els on the Multi30K testing set. The first four
rows show the results of the recent text-only MT
models. Game-MMT and UMMT are MMT mod-
els using both image and text inputs. Our full
model (T+V+VSE+CBT+CPT) yields new state-
of-the-art performance in BLEU and METEOR,
outperforming the text-only and multimodal base-
line model by a large margin. Notably, our full
model outperforms UMMT by +5.5∼12.5 BLEU
scores, sets a new state of the art in unsupervised
MMT.

Although pre-training plays a vital role in unsu-
pervised MT, comparing Ours-Text only and Ours-
Full, the results suggest that multimodal content
can further boost the performance for unsupervised
MT. Images provide +2.7∼3.7 BLEU score im-
provement across four tasks. Note that our model
uses different monolingual pre-training corpora
to MASS and XLM for the fair comparison with
UMMT. With a similar pre-training objective, our
text-only model is worse than MASS, while Ours-
Full outperforms MASS by +2.3∼3.7 in BLEU.

Comparing the multimodal models trained with
and without visual content (UMMT-T vs. UMMT-
Full and Ours-T vs. Ours-Full), our model achieves
+2.5∼3.7 improvements in BLEU while +1.4∼2.5
for UMMT. The results imply that, even with a
higher text-only baseline (e.g. 49.5 vs. 37.2 in
en→fr), the proposed model incorporates visual
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en→fr fr→en en→de de→en
Model BLEU METEOR BLEU METEOR BLEU METEOR BLEU METEOR

MUSE† (Conneau et al., 2018a) 8.5 - 16.8 - 15.7 - 5.4 -
UNMT† (Lample et al., 2018a) 32.8 - 32.1 - 22.7 - 26.3 -
XLM† (Conneau and Lample, 2019) 46.3 64.3 42.0 38.1 27.4 48.7 30.7 31.0
MASS† (Song et al., 2019) 49.8 65.8 43.7 38.7 30.2 51.3 32.5 33.4
Game-MMT (Chen et al., 2018) - - - - 16.6 - 19.6 -
UMMT-T† (Su et al., 2019) 37.2 33.7* 38.5 36.4 21.0 25.4* 25.0 28.4
UMMT-Full (Su et al., 2019) 39.8 35.5* 40.5 37.2 23.5 26.1* 26.4 29.7
Ours-Text only† 49.5 65.7 43.5 38.5 30.1 51.5 32.4 33.0
Ours-Full 52.3 67.6 46.0 39.8 33.9 54.1 36.1 34.7

Table 1: Results on unsupervised MT. Comparison with benchmarks on the Multi30K testing set. Our full model
is with T+V+VSE+CBT+CPT. The best score is marked bold. † means text-only. * is the METEOR score shown
in the UMMT paper.

content more effectively.
In Figure 3, we provide some qualitative results

on the Multi30K testing set. We observe a con-
sistent improvement of unsupervised translation
quality with our full model to the text-only one.
Without parallel translation pairs as the vital super-
vision, the proposed pseudo visual pivoting suc-
cessfully disambiguates the word semantics in the
similar syntactic category and results in improved
cross-lingual word alignment; for instance, “cafe”
vs. “soda” machine in the third French example,
and “felsigen” (rocky) vs. “verschneiten” (snowy)
in the first German example.

4.5.2 Ablation Studies
To quantify module-wise contribution in pseudo vi-
sual pivoting, we summarize our ablation studies in
Table 2. Comparing the performance improvement
from text-only to the model with regional visual
features (T+V), the features of salient visual ob-
jects contribute +0.6∼0.9 BLEU score over a much
higher text-only baseline compared to UMMT.

In pseudo visual pivoting, +VSE promotes the
alignments in the monolingual VSE spaces and
results in an additional +1.3∼2.0 gain in BLEU.
This improvement validates our hypothesis that the
visual space can effectively serve as the bridge con-
necting the source and target language latent spaces.
Also, synthesizing image-pivoted pseudo caption
pairs effectively provides weak supervision for
aligning the cross-lingual latent space in unsuper-
vised MMT. We observe that the pivoted captions
for paired translation (CPT) is more effective than
treating them as back-translation pairs (CBT). Uti-
lizing generated image-pivoted captions is shown
to be a promising approach for weakly supervised

Model (Ours) en→fr fr→en en→de de→en
Text only 49.52 43.48 30.10 32.35
T+V 50.43 44.10 31.01 32.95
T+V+VSE 51.72 45.73 32.67 34.94
T+V+CPT 51.64 45.55 33.04 35.02
T+V+CBT 51.23 45.21 32.51 33.87
T+V+VSE+CBT 51.81 45.83 33.01 34.38
T+V+CPT+CBT 51.85 45.65 33.61 35.85
T+V+VSE+CPT 52.19 46.10 33.73 35.60
Full Model 52.29 45.98 33.85 36.07

Table 2: Ablation studies. BLEU comparison of differ-
ent training objectives.

or unsupervised MMT. The full model which em-
ploys VSE, CBT, and CPT achieves +1.9∼3.1 im-
provements compared to our multimodal baseline
(row two, visual feature only).

4.5.3 Generalizability
How does our unsupervised MMT model gener-
alize when images are not available at the testing
time? Table 3 shows the testing results without
images. As can be observed, our model generalizes
well. The differences are mostly less than 1.0 in
BLEU. As our model, when being tested without
visual content, still outperforms other unsupervised
text-only or multimodal MT models listed in Ta-
ble 1, the minor drop in BLEU implies that the
improved cross-lingual latent space alignment via
pseudo visual pivoting is likely to be more critical
than using images as an input feature for decoding.
Luckily, such alignment is already preserved in the
training phase with the proposed approach.

An interesting question is: How much does the
visual content (as a feature) contribute? As in
leave-one-feature-out cross-validation, we compare
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T: un jeune garçon se tient sur un chariot de vêtements .

T+V: un jeune garçon s’apos accroche à un poteau de vêtements

GT: un jeune garçon s’apos accroche à un portant .

SRC: a young boy is hanging onto a clothing rack .

T: un chat assis sur le sommet d’apos un magasin de vêtements

T+V: un chat est assis sur un panneau de magasin .

GT: un chat est assis sur une enseigne de magasin .

SRC: a cat sits on top of a store sign .

T: deux garçons en train de faire une machine à café .

T+V: deux garçons devant une machine à soda . 

GT: deux garçons devant une machine à soda .

SRC: two boys in front of a soda machine .

(a) English→French

T: ein mann und eine junge auf einem verschneiten strand .

T+V: ein mann und ein junge auf einem felsigen strand .

GT: ein mann und ein junge auf einem felsigen strand .

SRC: a man and a boy on a rocky beach .

T: mann springt mit einem felsbrocken im hintergrund .

T+V: mann springt vor einer felsformation im hintergrund in die luft

GT: mann springt vor einer felsformation im hintergrund .

SRC
:

man jumping with a rock formation in background .

T: zwei männer spielen gitarre im freien .

T+V: zwei männer spielen gitarre vor einem großen publikum .

GT: zwei männer spielen gitarre vor einem großen publikum .

SRC: two men playing guitar in front of a large audience .

(b) English→German

Figure 3: Qualitative results of the proposed model. GT: ground truth. T+V: Our full model.

Model en→fr fr→en en→de de→en
UMMT 39.44-0.35 40.30-0.23 23.18-0.34 25.47-0.92

Ours-no VSE 51.60-0.25 45.39-0.26 33.25-0.36 35.15-0.70

Ours-Full 51.64-0.65 45.48-0.50 33.32-0.53 35.04-1.03

Table 3: BLEU with text-only inputs at the testing time.
Subscripts are the differences to testing with T+V.

the difference of performance between inferencing
with and without images. The larger the difference
(the subscripts in Table 3) implies a model better
utilizes visual content. Compared with UMMT, our
model has better utilization. We observe that the
key to such difference is the VSE objective. Our
model trained without the VSE objective results in
worse utilization (smaller difference at the testing
time), possibly because the source text-image pairs
are distant in the multilingual VSE space.

4.5.4 Real-pivoting & Low-resource Corpora

Will our model benefit from “real” pivoting (src-
img1, img1-tgt, overall src-img1-tgt)? We train
our models with overlapped images while leaving
sentences in the source and target languages un-
paralleled (use no translation pairs). From the first
three rows in Table 4, the performance is improved
when training with the overlapped images and their
corresponding sentences. Comparing the improve-
ment from 0% to 100% of the text-only model and
the full model, a larger gain is observed with the
proposed pseudo visual pivoting which aligns and
reduces uncertainty in the language latent spaces.

Furthermore, under the low-resource setting
(3.0K non-parallel data, row six and seven), a sub-
stantial improvement over the text-only model is
still observed. These results suggest that the pro-
posed pseudo visual pivoting is likely to generalize
to the semi-supervised and the low-resource setting,
which we consider as our future work.

Img overlap %
(# imgs/sents)

en→fr fr→en en→de de→en

0% (14.5K/14.5K) 52.29 45.98 33.85 36.07
50% (22K/22K) 55.13 47.54 34.61 37.01
100% (29K/29K) 58.34 50.57 35.45 38.55
0% (T only/14.5K) 49.52 43.48 30.10 32.35
100% (T only/29K) 53.35 46.27 31.35 34.06
0% (3.0K/3.0K) 31.48 27.91 23.94 26.60
0% (T only/3.0K) 30.33 26.95 21.65 23.47

Table 4: Testing BLEU of the full T+V model and the
text-only model trained with overlapped images or low-
resource unpaired corpora.

4.5.5 Supervised Case

Although the proposed pseudo visual pivoting tar-
gets unsupervised MMT, we are also interested in
its performance under the fully supervised setup.
To gain insights, we conduct supervised MMT ex-
periments by changing the back-translation objec-
tive for unsupervised MT (Eq. 6) to the supervised
MT objective (Eq. 2) with additional visual in-
puts. We benchmark with recent supervised MMT
models, including Imagination (Elliott and Kádár,
2017), LIUM-CVC (Caglayan et al., 2017), and
VAG (Zhou et al., 2018) on Multi30K.

Table 5 shows the testing results. Our model sig-
nificantly outperforms other baselines and achieves
state-of-the-art performance. Comparing to the
unsupervised model trained with full Multi30K
(Table 4,100% (29K/29K)), the direct supervision
from parallel translation pairs results in a +6.5∼7.1
gain in BLEU. Notably, images provide a minor
improvement with full supervision from transla-
tion pairs. This result implies that, compared to
serving as a complementary feature, visual infor-
mation likely contributes more to improving cross-
lingual alignment via pseudo visual pivoting for
MMT with limited supervision.
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en→fr en→de
Model BLEU METEOR BLEU METEOR

Imagination - - 30.2 51.2
LIUM-CVC 52.7 69.5 30.7 52.2
VAG 53.8 70.3 31.6 52.2
Ours (T) 65.2 79.3 42.0 60.5
Ours (T+V) 65.5 79.1 42.3 60.6

Table 5: Supervised MMT results on Multi30K

5 Related Work
Unsupervised MT For pivoting with a third lan-
guage, Firat et al. (2016) pre-train a multi-way
multilingual model to generate pseudo pairs to im-
prove zero-shot translation. Chen et al. (2017) use
a teacher-student framework and assume parallel
sentences share a similar likelihood for generat-
ing sentences in the third language while Cheng
et al. (2017) maximize the expected likelihood. Our
model does not rely on a third language. Our frame-
work is along the line of research in (Lample et al.,
2018a,b; Conneau and Lample, 2019), which aims
at learning an aligned latent space between the two
languages to translate by reconstruction. Neverthe-
less, we focus on the multimodal setup where the
visual space is dissimilar to the language spaces
with challenging asymmetric interactions between
modalities.
Supervised MMT Supervised MMT is introduced
in (Specia et al., 2016) as a multi-encoder single-
decoder framework with additional image inputs.
Huang et al. (2016) encode word sequences with
regional visual objects while Calixto and Liu
(2017) leverage global visual feature. LIUM-
CVC (Caglayan et al., 2017) uses element-wise
multiplication to model the image-text interac-
tion. Imagination (Elliott and Kádár, 2017) and
VAG (Zhou et al., 2018) learns with the auxil-
iary image reconstruction and source-image-target
triplet alignment tasks, respectively. While these
methods achieve improvements, their advantage
over the text-only models is still minor under the
supervised scenario. As analyzed in (Caglayan
et al., 2019), visual content is more critical when
the textual content is limited or uncertain in MMT.
We study the more challenging unsupervised MMT.
Unsupervised MMT To our best knowledge, three
recent works have generalized MMT to the unsu-
pervised setting. Nakayama and Nishida (2017)
learn modal-agnostic fixed length image/sentence
embeddings. In contrast, our model promotes fine-
grained (object-token) varying-length embedding,

which better aligns VSE space. Game-MMT (Chen
et al., 2018) use a captioning and a translation
model maximizing the likelihood of translated cap-
tions to original sentences. We synthesize captions
for symmetric back-translation and considers no
ground truth image annotation in the loop. Em-
pirically, it is preferred to separate real and gen-
erated captions. UMMT (Su et al., 2019) uses
Transformers, autoencoder loss, and multimodal
back-translation. We do not use autoencoder. Our
model leverages object detection for multimodal
back-translation and equips pseudo visual pivoting.
Image Captioning and VSE Our method draws
inspiration from captioning and cross-modal re-
trieval. Recent progress in captioning aims at using
reinforcement learning to improve diversity (Dai
et al., 2017) or maximize metric (Rennie et al.,
2017). We use a vanilla MLE objective. For learn-
ing VSE, we leverage the contrastive loss (Kiros
et al., 2014) from cross-modal retrieval, which is
shown more robust than maximizing canonical cor-
relation among modalities as in (Andrew et al.,
2013; Huang et al., 2018). For encoding image
and text, we generalize the cross-modality atten-
tion from SCAN (Lee et al., 2018) to the multi-
lingual scenario for learning a multilingual VSE
space (Gella et al., 2017; Huang et al., 2019a).

6 Conclusion
We have presented a novel approach: pseudo visual
pivoting for unsupervised multimodal MT. Beyond
features, we use visual content to improve the cross-
lingual alignments in the shared latent space. Pre-
cisely, our model utilizes the visual space as the ap-
proximate pivot for aligning the multilingual mul-
timodal embedding space. Besides, it synthesizes
image-pivoted pseudo sentences in two languages
and pairs them to translate by reconstruction with-
out parallel corpora. The experiments on Multi30K
show that the proposed model generalizes well and
yields new state-of-the-art performance.
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