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Abstract

This paper presents a tree-structured neural
topic model, which has a topic distribution
over a tree with an infinite number of branches.
Our model parameterizes an unbounded ances-
tral and fraternal topic distribution by applying
doubly-recurrent neural networks. With the
help of autoencoding variational Bayes, our
model improves data scalability and achieves
competitive performance when inducing latent
topics and tree structures, as compared to a
prior tree-structured topic model (Blei et al.,
2010). This work extends the tree-structured
topic model such that it can be incorporated
with neural models for downstream tasks.

1 Introduction

Probabilistic topic models, such as latent Dirich-
let allocation (LDA; Blei et al., 2003), are applied
to numerous tasks including document modeling
and information retrieval. Recently, Srivastava and
Sutton (2017); Miao et al. (2017) have applied the
autoencoding variational Bayes (AEVB; Kingma
and Welling, 2014; Rezende et al., 2014) frame-
work to basic topic models such as LDA. AEVB
improves data scalability in conventional models.

The limitation of the basic topic models is that
they induce topics as flat structures, not organizing
them into coherent groups or hierarchies. Tree-
structured topic models (Griffiths et al., 2004),
which detect the latent tree structure of topics, can
overcome this limitation. These models induce a
tree with an infinite number of nodes and assign a
generic topic to the root and more detailed topics
to the leaf nodes. In Figure 1, we show an exam-
ple of topics induced by our model. Such char-
acteristics are preferable for several downstream
tasks, such as document retrieval (Weninger et al.,
2012), aspect-based sentiment analysis (Kim et al.,
2013) and extractive summarization (Celikyilmaz
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Figure 1: Topics inferred by our tree-structured topic
model from Amazon reviews of laptop bags. The five
most frequent words are shown and manually labeled.

and Hakkani-Tur, 2010), because they provide suc-
cinct information from multiple viewpoints. For
instance, in the case of document retrieval of prod-
uct reviews, some users are interested in the general
opinions about bag covers, while others pay more
attention to specific topics such as the hardness or
color of the covers. The tree structure can navigate
users to the documents with desirable granularity.

However, it is difficult to use tree-structured
topic models with neural models for downstream
tasks. While neural models require a large amount
of data for training, conventional inference algo-
rithms, such as collapsed Gibbs sampling (Blei
et al., 2010) or mean-field approximation (Wang
and Blei, 2009), have data scalability issues. It
is also desirable to optimize the tree structure for
downstream tasks by jointly updating the neural
model parameters and posteriors of a topic model.

To overcome these challenges, we propose a tree-
structured neural topic model (TSNTM), which is
parameterized by neural networks and is trained us-
ing AEVB. While prior works have applied AEVB
to flat topic models, it is not straightforward to
parameterize the unbounded ancestral and frater-
nal topic distribution. In this paper, we provide a
solution to this by applying doubly-recurrent neu-
ral networks (DRNN; Alvarez-Melis and Jaakkola,
2017), which have two recurrent structures over
respectively the ancestors and siblings.
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Experimental results show that the TSNTM
achieves competitive performance against a prior
work (Blei et al., 2010) when inducing latent topics
and tree structures. The TSNTM scales to larger
datasets and allows for end-to-end training with
neural models of several tasks such as aspect-based
sentiment analysis (Esmaeili et al., 2019) and ab-
stractive summarization (Wang et al., 2019).

2 Related Works

Following the pioneering work of tree-structured
topic models by Griffiths et al. (2004), several ex-
tended models have been proposed (Ghahramani
et al., 2010; Zavitsanos et al., 2011; Kim et al.,
2012; Ahmed et al., 2013; Paisley et al., 2014).
Our model is based on the modeling assumption
of Wang and Blei (2009); Blei et al. (2010), while
parameterizing a topic distribution with AEVB.

In the context of applying AEVB to flat docu-
ment or topic modeling (Miao et al., 2016; Srivas-
tava and Sutton, 2017; Ding et al., 2018), Miao
et al. (2017) proposed a model, which is closely
related to ours, by applying recurrent neural net-
works (RNN) to parameterize an unbounded flat
topic distribution. Our work infers the topic distri-
butions over an infinite tree with a DRNN, which
enables us to induce latent tree structures.

Goyal et al. (2017) used a tree-structured topic
model (Wang and Blei, 2009) with a variational
autoencoder (VAE) to represent video frames as a
tree. However, their approach is limited to smaller
datasets. In fact, they used only 1,241 videos (corre-
sponding to documents) for training and separately
updated the VAE parameters and the posteriors of
the topic model by mean-field approximation. This
motivates us to propose the TSNTM, which scales
to larger datasets and allows for end-to-end training
with neural models for downstream tasks.

3 Tree-Structured Neural Topic Model

We present the generative process of documents
and the posterior inference by our model. As shown
in Figure 2, we draw a path from the root to a leaf
node and a level for each word. The word is drawn
from the multinomial distribution assigned to the
topic specified by the path and level.

1. For each document index d ∈ {1, . . . , D}:
Draw a Gaussian vector: xd∼N (µ0,σ

2
0) (1)

Obtain a path distribution: πd = fπ(xd) (2)

Obtain a level distribution: θd = fθ(xd) (3)
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Figure 2: Sampling process of a topic for each word.

2. For each word index n ∈ {1, . . . , Nd} in d:

Draw a path: cd,n ∼ Mult(πd) (4)

Draw a level: zd,n ∼ Mult(θd) (5)

Draw a word: wd,n ∼ Mult(βcd,n[zd,n]) (6)

where βcd,n[zd,n] ∈ ∆V−1 is the word distribution
assigned to a topic, cd,n[zd,n]. While Wang and
Blei (2009); Blei et al. (2010) draw a path for each
document, this constrains a document to be gener-
ated from only the topics in the path. Hence, we
draw a path for each word, enabling a document to
be generated from all topics over a tree.

Wang and Blei (2009) draws a path and a level
distribution via the tree-based stick-breaking con-
struction given by (7) and (8):

νk∼Beta(1, γ), πk=πpar(k)νk

k−1∏
j=1

(1− νj) (7)

ηl∼Beta(1, α), θl=ηl

l−1∏
j=1

(1− ηj) (8)

Here, k ∈ {1, . . . ,K} and par(k) denote the k-th
topic and its parent, respectively. l ∈ {1, . . . , L}
denotes the l-th level. See Appendix A.1 for more
details.

In contrast, we introduce neural architectures,
fπ and fθ, to transform a Gaussian sample to a
topic distribution, allowing for posterior inference
with AEVB. Specifically, we apply a DRNN to
parameterize the path distribution over the tree.

3.1 Parameterizing Topic Distribution
A DRNN is a neural network decoder for gener-
ating tree-structured objects from encoded repre-
sentations (Alvarez-Melis and Jaakkola, 2017). A
DRNN consists of two RNNs over respectively the
ancestors and siblings (see Appendix A.2). We
assume that their two recurrent structures can pa-
rameterize the unbounded ancestral and fraternal
path distribution conditioned on a Gaussian sample
x, using a finite number of parameters.
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The hidden state, hk, of the topic k is given by:

hk = tanh(Wphpar(k) +Wshk−1) (9)

where hpar(k) and hk−1 are the hidden states of
a parent and a previous sibling of the k-th topic,
respectively. We alternate the breaking proportions,
ν, in (7) and obtain the path distribution, π, as:

νk = sigmoid(h>k x) (10)

Moreover, we parameterize the unbounded level
distribution, θ, by passing a Gaussian vector
through a RNN and alternating the breaking pro-
portions, η, in (8) as:

hl = tanh(Whl−1) (11)

ηl = sigmoid(h>l x) (12)

3.2 Parameterizing Word Distribution

Next, we explain the word distribution assigned to
each topic1. We introduce the embeddings of the
k-th topic, tk ∈ RH , and words, U ∈ RV×H , to
obtain the word distribution, βk ∈ ∆V−1, by (13).

βk = softmax(
U · t>k
τ

1
l

) (13)

where τ
1
l is a temperature value and produces more

sparse probability distribution over words as the
level l gets to be deeper (Hinton et al., 2014).

As the number of topics is unbounded, the
word distributions must be generated dynamically.
Hence, we introduce another DRNN to generate
topic embeddings as tk = DRNN(tpar(k), tk−1).

Several neural topic models (Xie et al., 2015;
Miao et al., 2017; He et al., 2017) have introduced
diversity regularizer to eliminate redundancy in the
topics. While they force all topics to be orthogonal,
this is not suitable for tree-structured topic models,
which admit the correlation between a parent and
its children. Hence, we introduce a tree-specific
diversity regularizer with t̄ki = ti − tk as:∑

k/∈Leaf

∑
i,j∈Chi(k):i 6=j

(
t̄>ki · t̄kj
‖t̄ki‖‖t̄kj‖

− 1

)2

(14)

where Leaf and Chi(k) denote the set of the top-
ics with no children and the children of the k-th
topic, respectively. By adding this regularizer to the
variational objective, each child topic becomes or-
thogonal from the viewpoint of their parent, while
allowing parent–children correlations.

1βk can be drawn from another distribution, but here we
set it as a model parameter following Miao et al. (2017).

3.3 Variational Inference with AEVB

Under our proposed probabilistic model, the likeli-
hood of a document is given by (15):
p(wd|µ0,σ0,β)

=

∫
π,θ

{∏
n

∑
cn,zn

p(wn|βcn[zn])p(cn|π)p(zn|θ)
}

p(π,θ|µ0,σ0) dπdθ

=

∫
π,θ

{∏
n

(β · φ)wn

}
p(π,θ|µ0,σ0)dπdθ

(15)

where φ ∈ ∆K−1 is the topic distribution and is
derived as φk =

∑L
l=1 θl(

∑
c:cl=k

πc).
As the latent variables cn and zn are integrated

out in (15), the evidence lower bound for the docu-
ment log-likelihood is derived as:

Ld =Eq(π,θ|wd)

[∑
n

log(β · φ)wn

]
−KL

[
q(π,θ|wd)||p(π,θ|µ0,σ0)

] (16)

where q(π,θ|wd) is the variational distribution ap-
proximating posteriors.

Following the AEVB framework, we introduce
multi-layer perceptrons (MLP) fµ and fσ2 for
transforming bag-of-words vectorwd to the varia-
tional Gaussian distribution. The variational distri-
bution of the posteriors is re-written as:

q(π,θ|wd) = q(fπ(x), fθ(x)|wd)

= N (x|fµ(wd), fσ2(wd))
(17)

We sample π̂ and θ̂ from q(π,θ|wd) by sampling
ε̂ ∼ N(0, I) and computing x̂ = fµ(wd) + ε̂ ·
fσ2(wd). The priors, p(π,θ|µ0,σ

2
0), is also re-

written as N (x|µ0,σ
2
0).

To sum up, the evidence lower bound is approxi-
mated with sampled topic distribution φ̂ as:

Ld≈
∑
n

log(β · φ̂)wn−

KL
[
N (x|fµ(wd), fσ2(wd))||N (x|µ0,σ

2
0)
] (18)

3.4 Dynamically Updating the Tree Structure

To allow an unbounded tree structure, we intro-
duce two heuristic rules for adding and pruning the
branches. We compute the proportion of the words
in topic k: pk=(

∑D
d=1Nd φ̂d,k)/(

∑D
d=1Nd). For

each non-leaf topic k, if pk is more than a threshold,
a child is added to refine the topic. For each topic k,
if the cumulative proportion of topics over descen-
dants,

∑
j∈Des(k) pj , is less than a threshold, the

k-th topic and its descendants are removed (Des(k)
denotes the set of topic k and its descendants). We
also remove topics with no children at the bottom.
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4 Experiments
4.1 Datasets
In our experiments, we use the 20NewsGroups and
the Amazon product reviews. The 20NewsGroups is
a collection of 20 different news groups containing
11, 258 training and 7, 487 testing documents2. For
the Amazon product reviews, we use the domain
of Laptop Bags provided by Angelidis and Lapata
(2018), with 31, 943 training, 385 validation and
416 testing documents3. We use the provided test
documents in our evaluations, while randomly split-
ting the remainder of the documents into training
and validation sets.

4.2 Baseline Methods
As baselines, we use a tree-structured topic model
based on the nested Chinese restaurant process
(nCRP) with collapsed Gibbs sampling (Blei et al.,
2010). In addition, we use a flat neural topic model,
i.e. the recurrent stick-breaking process (RSB),
which constructs the unbounded flat topic distribu-
tion via an RNN (Miao et al., 2017).

4.3 Implementation Details
For the TSNTM and RSB, we use 256-dimensional
word embeddings, a one-hidden-layer MLP with
256 hidden units, and a one-layer RNN with 256
hidden units to construct variational parameters.
We set the hyper-parameters of Gaussian prior dis-
tribution µ0 and σ2

0 as a zero mean vector and a
unit variance vector with 32 dimensions, respec-
tively. We train the model using AdaGrad (Duchi
et al., 2011) with a learning rate of 10−2, an initial
accumulator value of 10−1, and a batch size of 64.
We grow and prune a tree with a threshold of 0.05
in Section 3.4 and set a temperature as τ = 10 in
Section 3.2 4.

Regarding the nCRP-based model, we set the
nCRP parameter as γ = 0.01, the GEM parameter
as π = 10,m = 0.5, and the Dirichlet parameter
as η = 5.

The hyperparameters of each model are tuned
based on the perplexity on the validation set in the
Amazon product reviews. We fix the number of
levels in the tree as 3 with an initial number of
branches 3 for both the second and third levels.

2For direct comparison against Miao et al. (2017),
we use the training/testing splits and the vocabulary
provided at https://github.com/akashgit/
autoencoding_vi_for_topic_models.

3https://github.com/stangelid/oposum
4The code to reproduce the results is available at: https:

//github.com/misonuma/tsntm.

NPMI 20News Amazon

RSB (Miao et al., 2017) 0.201 0.102
nCRP (Blei et al., 2010) 0.198 0.112
TSNTM (Our Model) 0.220 0.121

Table 1: Average NPMI of the induced topics.

Perplexity 20News Amazon

RSB (Miao et al., 2017) 931 472
nCRP (Blei et al., 2010) 681 303
TSNTM (Our Model) 886 460

Table 2: Average perplexity of each model.

4.4 Evaluating Topic Interpretability
Several works (Chang et al., 2009; Newman et al.,
2010) pointed out that perplexity is not suitable for
evaluating topic interpretability. Meanwhile, Lau
et al. (2014) showed that the normalized pointwise
mutual information (NPMI) between all pairs of
words in each topic closely corresponds to the rank-
ing of topic interpretability by human annotators.
Thus, we use NPMI instead of perplexity as the
primary evaluation measure following Srivastava
and Sutton (2017); Ding et al. (2018).

Table 1 shows the average NPMI of the topics
induced by each model. Our model is competitive
with the nCRP-based model and the RSB for each
dataset. This indicates that our model can induce
interpretable topics similar to the other models.

As a note, we also show the average perplexity
over the documents of each model in Table 2. For
the AEVB-based models (RSB and TSNTM), we
calculate the upper bound of the perplexity using
ELBO following Miao et al. (2017); Srivastava
and Sutton (2017). In contrast, we estimate it by
sampling the posteriors in the nCRP-based model
with collapsed Gibbs sampling.

Even though it is difficult to compare them di-
rectly, the perplexity of the nCRP-based model is
lower than that of the AEVB-based models. This
tendency corresponds to the result of Srivastava
and Sutton (2017); Ding et al. (2018), which re-
port that the model with collapsed Gibbs sampling
achieves the lowest perplexity in comparison with
the AEVB-based models. In addition, Ding et al.
(2018) also reports that there is a trade-off between
perplexity and NPMI. Therefore, it is natural that
our model is competitive with the other models
regarding to NPMI, while there is a significant dif-
ference in achieved perplexity.

https://github.com/akashgit/autoencoding_vi_for_topic_models
https://github.com/akashgit/autoencoding_vi_for_topic_models
https://github.com/stangelid/oposum
https://github.com/misonuma/tsntm
https://github.com/misonuma/tsntm
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Figure 3: Topic specialization scores for each level.
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4.5 Evaluating Tree-Structure
For evaluating the characteristic of the tree struc-
ture, we adopt two metrics: topic specialization and
hierarchical affinity following Kim et al. (2012).

Topic specialization: An important character-
istic of the tree-structure is that the most general
topic is assigned to the root, while the topics be-
come more specific toward the leaves. To quantify
this characteristic, we measure the specialization
score as the cosine similarity of the word distribu-
tion between each topic and the entire corpus. As
the entire corpus is regarded as the most general
topic, more specific topics have lower similarity
scores. Figure 3 presents the average topic special-
ization scores for each level. While the root of the
nCRP is more general than that of our model, the
tendency is roughly similar for both models.

Hierarchical Affinity: It is preferable that a
parent topic is more similar to its children than
the topics descended from the other parents. To
verify this property, for each parent in the second
level, we calculate the average cosine similarity of
the word distribution to children and non-children
respectively. Figure 4 shows the average cosine
similarity over the topics. While the nCRP-based
model induces child topics slightly similar to their
parents, our model infers child topics with more
similarity to their parent topics. Moreover, lower
scores of the TSNTM also indicate that it induces
more diverse topics than the nCRP-based model.

Example: In Section 1, an example of the in-
duced topics and the latent tree for the laptop bag
reviews is shown in Figure 1.

4.6 Evaluating Data Scalability
To evaluate how our model scales with the size of
the datasets, we measure the training time until the
convergence for various numbers of documents.
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Figure 5: Training time for various number of docs.

We randomly sample several number of docu-
ments (1,000, 2,000, 4,000, 8,000, 16,000 and all)
from the training set of the Amazon product reviews
and measure the training time for each number of
documents. The training is stopped when the per-
plexity of the validation set is not improved for 10
consecutive iterations over the entire batches. We
measure the time to sample the posteriors or up-
date the model parameters, except for the time to
compute the perplexity 5.

As shown in Figure 5, as the number of docu-
ments increases, the training time of our model
does not change considerably, whereas that of
the nCRP increases significantly. Our model can
be trained approximately 15 times faster than the
nCRP-based model with 32,000 documents.

5 Conclusion
We proposed a novel tree-structured topic model,
the TSNTM, which parameterizes the topic distri-
bution over an infinite tree by a DRNN.

Experimental results demonstrated that the
TSNTM achieves competitive performance when
inducing latent topics and their tree structures, as
compared to a prior tree-structured topic model
(Blei et al., 2010). With the help of AEVB, the
TSNTM can be trained approximately 15 times
faster and scales to larger datasets than the nCRP-
based model.

This allows the tree-structured topic model to be
incorporated with recent neural models for down-
stream tasks, such as aspect-based sentiment analy-
sis (Esmaeili et al., 2019) and abstractive summa-
rization (Wang et al., 2019). By incorporating our
model instead of flat topic models, they can provide
multiple information with desirable granularity.
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A Appendices

A.1 Tree-Based Stick-Breaking Construction

Figure 6 describes the process of the tree-based
stick-breaking construction (Wang and Blei, 2009).
At the first level, the stick length is π1 = 1. Then,
the stick-breaking construction is applied to the
first level stick to obtain the path distribution over
the second level. For instance, if the second level
contains K=3 topics, the probability of each path
is obtained as π11=π1ν11, π12=π1ν12(1−ν11) and
the remaining stick π13=π1(1−ν12)(1−ν11). Gen-
erally, for any values of K, it satisfies

∑K
k=1 π1k=

π1. The same process is applied to each stick pro-
portion of the second level and continues until it
reaches to the bottom level.

π1 = 1

π11 π12

π111 π112 π121 π122… …

…

π1 v11

π1 v12 (1 - v11)

π123 …

…

stick-breaking construction:
π1 (1 - v11)

Figure 6: Tree-based stick-breaking construction.
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Figure 7: Doubly-recurrent neural networks.

A.2 Doubly-Recurrent Neural Networks
Figure 7 shows the architecture of doubly-recurrent
neural networks (Alvarez-Melis and Jaakkola,
2017). It consists of two recurrent neural networks
over respectively the ancestors and siblings that are
combined in each cell as described in (9).


