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Abstract

This paper studies the task of comparative
preference classification (CPC). Given two en-
tities in a sentence, our goal is to classify
whether the first (or the second) entity is pre-
ferred over the other or no comparison is ex-
pressed at all between the two entities. Ex-
isting works either do not learn entity-aware
representations well and fail to deal with sen-
tences involving multiple entity pairs or use
sequential modeling approaches that are un-
able to capture long-range dependencies be-
tween the entities. Some also use traditional
machine learning approaches that do not gener-
alize well. This paper proposes a novel Entity-
aware Dependency-based Deep Graph Atten-
tion Network (ED-GAT) that employs a multi-
hop graph attention over a dependency graph
sentence representation to leverage both the
semantic information from word embeddings
and the syntactic information from the depen-
dency graph to solve the problem. Empiri-
cal evaluation shows that the proposed model
achieves the state-of-the-art performance in
comparative preference classification.

1 Introduction

Given a sentence that contains two entities of in-
terest, the task of Comparative Preference Classifi-
cation is to decide whether there is a comparison
between the two entities and if so, which entity is
preferred (Jindal and Liu, 2006a; Ganapathibhotla
and Liu, 2008; Liu, 2012; Panchenko et al., 2019).
For example, considering sentence s1 (shown in
Table 1), there is a comparison between the two
underlined entities, and “golf” is preferred over
“baseball”. This sentence contains explicit compar-
ative predicate “easier”. The task seems straightfor-
ward but is quite challenging due to many counter-
examples. For example, s2 shows that “better” may
not indicate a comparison. s3, another counter-
example, shows that “slower” indeed indicates a

ID Sentences
s1 Golf is easier to pick up than baseball.
s2 I’m considering learning Python and more PHP

if any of those would be better.
s3 The tools based on Perl and Python is much

slower under Windows than K9.

Table 1: Comparative sentence examples. Entities of
interest are underlined in each sentence.

comparison, but not between “Perl” and “Python”,
but between “tools” and “K9”.

Problem statement. Given a sentence s =
〈w1, w2, ..., e1, ..., e2, ...wn〉, where e1 and e2 are
entities consisting of a single word or a phrase,
and e1 appears before e2 in the sentence, our goal
is to classify the comparative preference direction
between these two entities into one of the three
classes: {BETTER, WORSE, NONE}. BETTER
(WORSE) means e1 is preferred (not preferred)
over e2. NONE means that there is no comparative
relation between e1 and e2.

Although closely related, Comparative Prefer-
ence Classification (CPC) is different from Com-
parative Sentence Identification (CSI), which is a
2-class classification problem that classifies a sen-
tence as a comparative or a non-comparative sen-
tence. In previous work, Jindal and Liu (2006a)
did CSI without considering which two entities are
involved in a comparison. Tkachenko and Lauw
(2015) employed some dependency graph features
to approach the CSI task given two entities of in-
terest. In this entity-aware case, syntactic features
are crucial. However, not using word embeddings
in the model makes the model harder to generalize
with a good performance given various ways of
expressing comparisons. Panchenko et al. (2019)
gave the state-of-the-art result on the CPC task by
using a pretrained sentence encoder to produce sen-
tence embeddings as a feature for classification.
However, this model is not entity-aware and does
not use the dependency graph information.
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thanWindowsunderslowermuchisPythonandPerlonbasedtoolsThe K9 .

Figure 1: Dependency graph representation of a comparative sentence

For the CPC task, building a model that is entity-
aware and also explicitly uses the dependency
graph information is vital. We explain the reason as
follows. For example, the dependency graph infor-
mation gives a clue that the underlined entities in
s2 of Table 1 are not involved in a comparison, al-
though there is a comparative indicator “better” in
the sentence. s3 (also refer to Figure 1) has two en-
tity pairs, which make an entity-aware model neces-
sary. The pair of entities, tools and K9, are far away
from each other in the sequence. But in the depen-
dency graph, they are just two hops away from each
other and one hop away from the key comparative
predicate “slower”. For the pair of entities, Perl and
Python, although both are sequentially near to the
word “slower”, the dependency graph information
does not indicate they are involved in a comparison.
We see that an entity-aware model can avoid the
mistake of taking comparative predicates not asso-
ciated with the entity pair as an evidence. Also, the
dependency graph of a sentence contains important
clues that can benefit the comparative preference
classification. Methods, which are not entity-aware
and do not model dependency structures, are not
capable of dealing with the cases in s2 and s3.

To address the limitations of the previous mod-
els, we propose a novel Entity-aware Dependency-
based Deep Graph Attention Network (ED-GAT)
for comparative preference classification. We rep-
resent a sentence by its dependency graph. This
Graph Attention Network (GAT) (Veličković et al.,
2018) based model can naturally fuse word seman-
tic information and dependency information within
the model. By building a deep graph attention
network stacking several self-attention layers, the
model can effectively capture long-range dependen-
cies, which is beneficial for identifying the compar-
ison preference direction between two entities. We
have applied this model on a real-world benchmark
dataset, and the results show that incorporating the
dependency graph information greatly helps this
task. It outperforms strong and latest baselines, as
discussed in the experiments.

2 Proposed Model

In this section, we first give a brief introduction
to the GAT model. We then present the proposed

ED-GAT model and discuss how to apply it to the
CPC task.

2.1 Graph Attention Network (GAT)

The critical component of our model is the Graph
Attention Network (GAT) (Veličković et al., 2018),
which fuses the graph-structured information and
node features within the model. Its masked self-
attention layers allow a node to attend to neighbor-
hood features and learn different attention weights
for different neighboring nodes.

The node features fed into a GAT layer are
X = [x1,x2, ...xi, ...xn], xi ∈ RF , where n is
the number of nodes, F is the feature size of each
node. The attention mechanism of a typical GAT
can be summarized by equation (1).

hout
i =

K

‖
k=1

σ

∑
j∈Ni

αk
ijW

kxj


αk
ij =

exp(f((ak)T [W kxi ‖W kxj ]))∑
c∈Ni

exp(f((ak)T [W kxi ‖W kxc]))

(1)

Here, given the node feature vectors in GAT,
node i attends over its 1-hop neighbors j ∈ Ni.

‖K
k=1

denotes the concatenation of K multi-head
attention outputs, hout

i ∈ RF ′
is the output of node

i at the current layer, αk
ij is the k-th attention be-

tween nodes i and j, W k ∈ R
F ′
K
×F is linear trans-

formation, ak ∈ R
2F ′
K is the weight vector, and

f(·) is LeakyReLU non-linearity function.
Overall, the input-output for a single GAT layer

is summarized as Hout = GAT (X,A; Θl). The
input is X ∈ Rn×F and the output is Hout ∈
Rn×F ′

, where n is the number of nodes, F is the
node feature size, F ′ is GAT hidden size, and A ∈
Rn×n is the adjacency matrix of the graph.

2.2 ED-GAT for CPC task

We use the dependency parser in (Chen and Man-
ning, 2014) to convert a sentence into a dependency
parse graph. Each word corresponds to a node in
the graph. The node features are the word em-
bedding vectors, denoted as xi ∈ RF correspond-
ing to node i. The input node feature matrix is
X ∈ Rn×F . Note that an entity is either a single
word or a multi-word phrase. To treat each entity as
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GAT layer 1

GAT layer L

...

Output

Softmax

Figure 2: L layer ED-GAT model

one node, we replace the whole entity word/phrase
with “EntityA” or “EntityB” before parsing. A
multi-word entity embedding is obtained by aver-
aging the embeddings of the words in the entity.
We observe that for a given node in the depen-
dency parse graph, both its parents and children
contain useful information for the task. To make
the ED-GAT model treat both its parents and chil-
dren as neighbors, we simplify the original directed
dependency graph into an undirected graph. The
structure of the graph is encoded into an adjacency
matrix A ∈ Rn×n. ED-GAT does not attend to all
neighbors of a given node on an equal basis. The at-
tention weights to the neighbors are automatically
learned during training based on their usefulness
to the task, regardless of whether they are parents
or children in the dependency graph. The higher
the attention weight given to a neighbor, the more
useful this neighbor is to the task.

In a single GAT layer, a word or an entity in
a graph only attends over the local information
from 1-hop neighbors. To enable the model to
capture long-range dependencies, we stackL layers
to make a deep model, which allows information
from L-hops away to propagate to this word. Our
model is thus a deep graph attention network.

As illustrated in Figure 2, the stacking architec-
ture is represented as H l+1 = GAT (H l,A; Θl),
l ≥ 0, H0 = XW0 + b0. The output of the GAT
layer l, H l

out = GAT (H l,A; Θl), is the input for
layer (l + 1), denoted by H l+1. H0 is the initial
input. W0 ∈ RF×F ′

and b0 are the projection ma-
trix and bias vector. For a L layer ED-GAT model,
the output of the final layer is HL

out ∈ Rn×F ′
.

We use a mask layer to fetch the two hidden vec-
tors from HL

out, which corresponds to the two en-
tities of interest: (he1 ,he2) = Masklayer(HL

out).

Next, we concatenate these two vectors as: v =
[he1 ‖ he2 ] and use a feed-forward layer with soft-
max function to project v into classes for prediction.
Here using he1 and he2 makes the ED-GAT model
entity-aware as they are the output of the nodes
corresponding to entities e1 and e2, each of which
attends over its neighbors’ features in L hops in
the graph and leverages both the word semantics
and dependency structure information in learning.
The ED-GAT model is trained by minimizing the
standard cross-entropy loss over training examples.

3 Related Works

Many papers have been devoted to exploring com-
parisons in text. For the CSI task, early works
include those in (Jindal and Liu, 2006a; Ganap-
athibhotla and Liu, 2008). More recently, Park
and Blake (2012) employed handcrafted syntactic
rules to identify comparative sentences in scientific
articles. For other languages such as Korean and
Chinese, related works include (Huang et al., 2008),
(Yang and Ko, 2009) and (Zhang and Jin, 2012).

Other works are interested in identifying entities,
aspects and comparative predicates in comparative
sentences, e.g., (Jindal and Liu, 2006b), (Hou and
Li, 2008), (Kessler and Kuhn, 2014), (Kessler and
Kuhn, 2013), and (Feldman et al., 2007). Ganap-
athibhotla and Liu (2008) used lexicon properties
to determine the preferred entities given the output
of (Jindal and Liu, 2006b), which is quite different
from our task.

There are also works related to product ranking
using comparisons, such as those in (Kurashima
et al., 2008), (Zhang et al., 2013), (Tkachenko and
Lauw, 2014) and (Li et al., 2011). All these related
works solve very different problems in comparison
analysis than our CPC task.

Works in NLP that use Graph Neural Networks
and dependency graph structures include (Huang
and Carley, 2019), (Guo et al., 2019). But their
tasks and models are different from ours.

4 Experiments

4.1 Dataset

We perform experiments using the benchmark
CompSent-19 dataset (Panchenko et al., 2019),
where each sentence has an entity pair (e1, e2)
and its comparative preference label. The origi-
nal dataset is split into an 80% training set and a
20% test set. During the experiment, we further
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Dataset Better Worse None Total
Train 872(19%) 379(8%) 3,355(73%) 4,606
Dev 219(19%) 95(8%) 839(73%) 1,153
Test 273(19%) 119(8%) 1,048(73%) 1,440
Total 1,346 593 5,242 7,199

Table 2: Statistics of the CompSent-19 dataset

split the original training data by randomly sam-
pling 20% for each label as the development set for
model selection. The dataset statistics are given in
Table 2. The model is trained only on the newly
split training set. We use the class-based F1 score
as the evaluation measure. F1(B), F1(W) and F1(N)
represent F1 score for classes BETTER, WORSE
and NONE respectively. F1-Micro is the average
F1 score as in (Panchenko et al., 2019).

4.2 Model Implementation Details

The Stanford Neural Network Dependency
Parser (Chen and Manning, 2014) is used to build
the dependency parse graph for each sentence. In
our experiment, we use two pretrained word em-
beddings: GloVe embeddings (Pennington et al.,
2014)1 and BERT embedding (Devlin et al., 2019)2.
The input of BERT is formatted as the standard
BERT input format, with “[CLS]” before and
“[SEP]” after the sentence tokens. For this, we em-
ploy the BERT tokenizer to tokenize each word into
word pieces (tokens). The output of the pretrained-
BERT model is a sequence of embeddings, each
of size 768, and corresponds to a word piece. We
average the word piece embeddings of the original
word to get the embedding for each word (node
in the dependency graph). Note that, word em-
beddings are kept frozen and not fine-tuned by the
subsequent model structure.

For the ED-GAT model, we set the hidden size
as 300. The features of the nodes, which are the
word embeddings, are first transformed into vectors
of the hidden size and then fed into the ED-GAT
model. We use 6 attention heads, training batch
size of 32, Adam optimizer (Kingma and Ba, 2014)
with learning rate 5e-4, word embedding dropout
rate (Srivastava et al., 2014) 0.3 and GAT attention
dropout rate 0. The implementation of the model
is based on PyTorch Geometric (PyG) (Fey and
Lenssen, 2019) and NVIDIA GPU GTX 1080 ti.

1http://nlp.stanford.edu/data/glove.840B.300d.zip
2For all our BERT related experiments, we use the pre-

trained BERT model: https://storage.googleapis.
com/bert_models/2018_10_18/uncased_L-12_
H-768_A-12.zip

4.3 Compared Models

We compare models from the previous literature
with several variations of our proposed model.

Majority-Class assigns the majority label in the
training set to each instance in the test set.

SentEmbed given in (Panchenko et al., 2019)
obtains sentence embeddings from a pretrained
Sentence Encoder (Conneau et al., 2017; Bow-
man et al., 2015). The sentence embedding3 is
then fed to XGBoost (Chen and Guestrin, 2016)
for classification. For a fair comparison, we also
feed the sentence embedding into a linear layer.
They are represented as SentEmbedXGBoost and
SentEmbedLinear.

SVM-Tree4 given in (Tkachenko and Lauw,
2015) uses convolution kernel methods and depen-
dency tree features to approach the CSI task. We
use the one-vs-rest technique to adapt this model
to our three-class CPC task.

WordEmbed-Avg first constructs a sentence
embedding by averaging the word embeddings of
all words in a sentence, and then feeds it to a linear
classifier. Glove-Avg and BERT-Avg, respectively
are the methods that use GloVe embeddings from
GloVe.840B (Pennington et al., 2014) and static
BERT embeddings (Devlin et al., 2019).

BERT-FT appends a linear classification layer
on the hidden state corresponding to the first token
“[CLS]” of the BERT sequence output and then fine-
tunes the pretrained BERT weights on our task.

ED-GAT is the proposed model in this paper
(Section 2.2). We use both GloVe embeddings
and BERT embeddings. We use (L) to represent
model variants with different numbers of layers
and use the subscript to denote the type of em-
bedding. For example, ED-GATGloVe(8) is the
ED-GAT model using GloVe embedding, and the
depth of the model is 8 layers. We also add the
LSTMBERT baseline, which uses the sequence out-
put of a static BERT model to train an LSTM model.
The final hidden vector is used for classification.

4.4 Results and Analysis

As we see in Table 3, the state-of-the-art (SOTA)
baseline is SentEmbedXGBoost. SentEmbedLinear
performs much worse than SentEmbedXGBoost.
This result shows that XGBoost classifies sentence
embeddings much better than a linear layer. Sim-
ply using word embedding average, GloVe-Avg

3https://github.com/facebookresearch/InferSent
4https://github.com/sitfoxfly/tree-svm

https://storage.googleapis.com/bert_models/2018_10_18/uncased_L-12_H-768_A-12.zip
https://storage.googleapis.com/bert_models/2018_10_18/uncased_L-12_H-768_A-12.zip
https://storage.googleapis.com/bert_models/2018_10_18/uncased_L-12_H-768_A-12.zip
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Models Micro. F1(B) F1(W) F1(N)
B

as
el

in
es

Majority-Class 68.95 0.0 0.0 81.62
SVM-Tree 68.12 53.35 13.90 78.13
SentEmbedLinear 79.31 62.71 37.61 88.42
SentEmbedXGBoost 85.00* 75.00* 43.00* 92.00*
Glove-Avg 76.32 48.28 20.12 86.34
BERT-Avg 77.64 53.94 26.88 87.47
LSTMBERT 80.97 63.55 44.02 88.95
BERT-FT 83.12 69.62 50.37 89.84

Pr
op

os
ed

M
od

el
s ED-GATGloVe(8) 83.96 72.58 47.35 90.79

ED-GATGloVe(9) 83.89 72.05 46.45 90.54
ED-GATGloVe(10) 84.24 72.56 50.20 91.19
ED-GATBERT(8) 87.43 78.21 56.14 92.98
ED-GATBERT(9) 86.46 74.40 58.72 92.31
ED-GATBERT(10) 86.18 77.35 53.33 92.23

Table 3: Comparison of baselines and ED-GAT variants. *
indicates the result is from the original paper.

and BERT-Avg do not perform well. The result
of LSTMBERT shows that using BERT embedding
sequentially is not suitable for our task. BERT-FT
fine-tunes BERT on our task, but its performance is
below SOTA. During experiments, we also found
that the performance of BERT-FT is unstable. The
training process of the model quickly overfits the
pretrained BERT weights.

For the ED-GAT model, we first tried to train
embeddings only on this dataset by randomly ini-
tializing word embeddings as input. As expected,
the results were significantly poorer than those us-
ing the pre-trained embeddings, in part because
our training data is very small (see Table 2). As
the baselines all use pretrained embeddings, we
thus report the results of using pre-trained word
embeddings in Table 3. When employing Glove
embeddings, surprisingly, ED-GATGloVe(10) per-
forms better than BERT-FT, which is based on a
language model pretrained on a huge corpus. We
also tried to employ word2vec5 for ED-GAT. It got
very similar results to those using the GloVe em-
beddings. The Micro-F1 scores of using word2vec
embeddings for the number of layers 8, 9, and 10
are 83.12, 83.33, and 84.86, respectively. To be
concise, we did not include these results in Table 3.

Our model also uses the static BERT embedding,
which further improves the result. Using static
BERT embedding avoids overfitting. On the one
hand, it incorporates the rich semantic information
with the BERT pretrained weights. On the other
hand, ED-GAT’s ability to leverage dependency
graph features greatly helps the model in capturing

5GoogleNews-vectors-negative300.bin.gz (https://
code.google.com/archive/p/word2vec/)

 

 

Figure 3: Effects of the number of layers in ED-GAT

the comparison between the entities and classify-
ing the preference direction. Our ED-GATBERT(8)
reports the new state-of-the-art results for CPC task
considering F1-Micro and all class-wise F1.

Effects of Model Depth. From Figure 3, we
see that increasing the number of stacked layers
improves the performance of the model. For ED-
GATGloVe, as GloVe does not contain the context
information, the GAT structure based on the depen-
dency graph greatly improves the result. Even the
2-layer model achieves a good result. ED-GATBERT
does not have the same effect because the BERT
embedding already contains rich semantic informa-
tion. But still, when the number of layers increases,
ED-GATBERT becomes more powerful as it cap-
tures longer range dependencies.

5 Conclusion
This paper proposes a novel model called ED-GAT
for Comparative Preference Classification. It nat-
urally leverages dependency graph features and
word embeddings to capture the comparison and
to classify the preference direction between two
given entities. Experimental results show that it
outperforms all strong baselines and even BERT
pretrained using a huge corpus.

Our future work aims to improve the CPC perfor-
mance further. Apart from that, we also plan to de-
sign novel models to perform the related tasks of en-
tity extraction and aspect extraction from compara-
tive sentences. Performing all these tasks jointly in
a multitask learning framework is a promising di-
rection as well because it can exploit the shared fea-
tures and the inherent relationships of these tasks
to perform all tasks better.
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