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Abstract

According to George K. Zipf, more fre-
quent words have more senses. We have
tested this law using corpora and wordnets
of English, Spanish, Portuguese, French,
Polish, Japanese, Indonesian and Chinese.
We have proved that the law works pretty
well for all of these languages if we take -
as Zipf did - mean values of meaning count
and averaged ranks. On the other hand,
the law disastrously fails in predicting the
number of senses for a single lemma. We
have also provided the evidence that slope
coefficients of Zipfian log-log linear model
may vary from language to language.

1 Introduction
The dependency between meaning and frequency
is undisputable. Since Zipf’s discovery of the high
correlation between mean sense count and mean
rank (Zipf, 1945), the law was confirmed by sev-
eral research teams. Among many Zipfian laws,
the modelling of the law of meaning-frequency
dependency is probably the most fascinating one,
because it directly concerns semantics. Mean-
ing strongly influences word frequency (Pianta-
dosi, 2014) and it is clear that semantics precedes
language form in text generation (Ferrer-i-Cancho,
2018).1

Originally, Zipf tested the law on Thorndike’s
list of 20k most frequent words of standard En-
glish2 and meanings taken from the Thorndike-

1Consider, for instance, a simple model of a random walk
on an undirected graph of lexico-semantic relations. The sta-
tionary probabilities of lending in each vertex are proportional
to the degree of the vertices (cf. Avrachenkov et al. (2015),
Lovász and Winkler (1995, p. 5)), that is to the number of
sense relations, including the number of interconnected pol-
ysemous senses of the same lemma. As a result, one gains
more polysemous words being chosen more frequently.

2A Teacher’s Word Book of 20,000 Words, New York:
Teachers College, 1932.

Century Senior Dictionary3 (Zipf, 1945). The dic-
tionary meaning account was based on the actual
usage in English newspapers, so there were no ob-
solete or rare senses. The corpus itself was 107

running words large, the lemmas on the frequency
list were divided into bins of 500 and 1,000 words.
Zipf proved a very strong correlation between the
average number of word senses and rank of lem-
mas (Zipf, 1945, p. 253), formulating the following
statistical law (Zipf, 1949, ch. 3):

mi ∝ fi
δ (1)

where i is a given word’s rank, fi is its frequency,
mi represents the number of lemma meanings,
Zipf also claimed that the coefficient δ ≈ 1

2 . Tak-
ing the logarithm of both sides leads to the equa-
tion in 2:

log10(mi) ∝ δ · log10(fi) (2)

The corresponding equation for the meaning-rank
law was formulated as follows:

log10(mi) ∝ −γ · log10(i) (3)

where i is a word rank. Zipf thought that γ = δ.
Zipf justified the straight meaning-rank line

in log-log scale with the “conflicting Forces of
Unification and Diversification”. While a lazy
speaker would always tend to use only a few highly
frequent and strongly polysemous words, a de-
manding hearer would prefer numerous unequiv-
ocal/monosemous words. Since these balancing
forces act within each frequency bin, language
equips more frequent words with more senses to
maintain a constant (‘compromise’) polysemy ra-
tio (Zipf, 1949).

He argued that the slope coefficient was close
to 0.5, which is now called the strong Zipf’s law

3New York: Appleton-Century, 1941.
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(Ferrer-i-Cancho, 2016), although the exact value
was in fact 0.466 (Zipf, 1945).4

Although he only proved the dependency be-
tween the mean number of senses m̄ and the mean
rank ī within each frequency bin,5 Zipf was sure
that the law (1) was applicable to every single
lemma:

(…) if we had a rank-frequency distribu-
tion of the 20,000 most frequent words
of the Thorndike analysis, it would prob-
ably be rectilinear (…), at least for the
first 10 to 12 thousand most frequent
words. (Zipf, 1949, ch.3)

A more recent verification of Zipf’s meaning-
frequency law has revealed that the relationship is
more complex than could have been foreseen in the
middle of the 20th century.

The aim of this paper is to provide new broad
empirical evidence for the weakened version of
Zipf’s meaning-frequency law6 based on corpora
and wordnets as sense inventories. Five Eu-
ropean languages (English, Spanish, Portuguese,
French and Polish) and three Asian languages
(Mandarin, Indonesian and Japanese) representing
four distinct language families (Indo-European,
Sino-Tibetan, Japonic and Austronesian) were in-
spected.

All data sets and source code are avail-
able at https://github.com/MarekMaziarz/
Zipf-s-Meaning-Frequency-Law.

2 Related Work
Despite the fact that most of Zipf’s laws, like the
law of frequency-rank distribution or the law of ab-
breviation, were studied thoroughly, the meaning-
frequency law itself gained relatively less atten-
tion (Casas et al., 2019). Still, some attempts were
made by several research teams.

Edmonds (2004) repeated Zipf’s experiment on
the British National Corpus with the use of Prince-
ton WordNet 2.0. He gathered lemmas in bins of
100 words each and estimated the γ coefficient at
0.40 (cf. Table 1).

4Provided the first 500 words were omitted, which Zipf
tended to treat as function words.

5Thorndike’s frequency list divided words into bins of 500
and 1,000 words without giving any precise information about
the exact number of occurrences of each lemma.

6Strong Zipf’s law of meaning-frequency relationship
forces the slope coefficient γ to be equal to 0.5, while weak
version of the law simply states that γ > 0 (Ferrer-i-Cancho,
2016).

experiment lang. γ

Zipf, 1945, 1949 en .47
Edmonds, 2004 en .40
Ilgen & Karaoglan, 2007 tr .42, .39
Casas et al. 2019 en .38
Casas et al. 2019 es .27
Casas et al. 2019 nl .25

Table 1: The power γ of Zipf’s law exponent of
Eq. (3) in hitherto experiments, for bins of 500
(with exception of Zipf’s paper and Edmonds’ ar-
ticle, details in text).

Ilgen and Karaoglan (2007) tested the law on
two Turkish corpora (newspapers, novels, short-
stories), one of which was manually tagged with
word senses, while the second one was compared
to an electronic Turkish dictionary. The authors
tested different frequency bin sizes ranging from
50 words up to 1000 words, showing gradual pre-
dictive power loss while moving from larger to
smaller bins. They obtained the slope coefficient
slightly lower than that of Zipf’s (0.42 and 0.39;
Table 1).

Hernández-Fernández et al. (2016) tested the
robustness of Zipf’s meaning law on two differ-
ent corpora (child and child-directed speech cor-
pus – CHILDES7, and the SemCor corpus) and two
sense inventories (WordNet and WordNet senses
that appear in SemCor).8 The authors merged the
resources in different combinations which, surpris-
ingly, in all cases led to non-zero correlation co-
efficients. Unlike previous parametric research,
the authors did not focus on mean values of sense
count and frequency, but estimated direct corre-
lations between row values of the two. They fo-
cused on those parts of speech that were present in
WordNet (nouns, adjectives, verbs and adverbs).
The authors concluded that positive and statisti-
cally significant correlation between sense count
and frequency seemed to be corpus-independent.

In Casas et al. (2019) the above non-parametric
approach was expanded to two other European
languages: Dutch and Spanish; English is anal-
ysed again. The sources of frequency were
the CHILDES corpus and Wikipidia, while the
sources of sense inventories were wordnets: Word-

7https://childes.talkbank.org/
8http://web.eecs.umich They also took frequency

counts from the English part of the CELEX corpus edu/
�mihalcea/downloads.html#semcor

https://github.com/MarekMaziarz/Zipf-s-Meaning-Frequency-Law
https://github.com/MarekMaziarz/Zipf-s-Meaning-Frequency-Law
https://childes.talkbank.org/
http://web.eecs.umich
edu/∼mihalcea/downloads.html#semcor
edu/∼mihalcea/downloads.html#semcor


Net, Open Dutch WordNet and the Multilingual
Central Repository for Spanish. Each wordnet is
“a proxy for the number of meanings of a word”
(ibidem).

Casas and colleagues (Casas et al., 2019) also
did some experiments with parametric modelling
with wordnets as sense inventories and CHILDES
corpus as a source of frequencies. They calcu-
lated slope coefficients and R-squared values for
bins of 100 and 500 words (cf. Tab. 1). They also
observed that smaller bins gave worse R-squared
statistics.

The criticism of the rank-frequency models was
addressed by Piantadosi (2014). Piantadosi raised
an important question of the explanatory valid-
ity of Zipf’s law derivation in various theoret-
ical models. Since there are dozens of differ-
ent ways of deriving the Zipf’s equations (such
as random-typing, stochastic models, semantic ac-
counts, communicative accounts etc.), the deriva-
tion lacks its explanatory power and “[t]he key will
be (...) to generate novel predictions and to test
their underlying assumptions with more data than
the law itself” (ibidem).

Altmann and Gerlach (2016) argue that lin-
guistic statistical models should be validated not
only by measures of fit like R-squared determi-
nation coefficient, but also with additional mea-
sures of randomness of model residuals (they pro-
pose significance level set at 1%): “A low p-value
is a strong indication that the null model is vi-
olated and may be used to refute the law (e.g.,
if p-value < 0.01).” According to them, ordi-
nary Zipfian rank-frequency linear models unfor-
tunately lack this randomness property (p-values
≪ 0.01). Piantadosi (2014) similarly points that
rank-frequency models based on corpus data when
analysed in a standard way (i.e., on the same sam-
ple), suffer from correlated errors, since the rank-
ing is constructed out of the very same frequency
distribution as frequency estimation itself. Luck-
ily, this argument cannot be applied to the same ex-
tent to meaning-frequency and meaning-rank dis-
tributions, since they are prepared with either fre-
quency, or rank at once. Especially, if the Zipf’s
meaning-frequency law (or meaning-rank law) is
modelled on the basis of different language re-
sources (like a wordnet and a corpus) the problem
vanishes.

3 Method

We checked the validity of Zipf’s meaning-rank
law by collating frequency counts and correspond-
ing meaning counts. We did this by comparing
general corpora, representing language in usage,
and sense numbers taken from wordnets, which
represent each language lexical system, cf. Fell-
baum (1998). Another way to see these two
sides of language reality is to compare frequen-
cies and polysemy count in the very same text (in
a widely sense tagged corpus). We did this on
the richly annotated Sherlock Holmes subcorpus
of Nanyang Technological University Multilingual
Corpus, NTU-MC (Bond and Tan, 2012).

3.1 Data sets: Wordnets
We treat wordnet as a useful model of human men-
tal lexicon, and wordnet sense numbers as the ap-
proximation of real polysemy of a lemma. The
choice of wordnets is motivated by their shared
properties (e.g. similar relational description mod-
els, existence of synsets, glosses) which allow
us to directly compare Zipfian curves for differ-
ent languages. For the purposes of our study,
we have chosen eight wordnets. The wordnets
include: Princeton WordNet (henceforth, PWN)
(Fellbaum, 1998), Polish WordNet (henceforth,
plWN) (Maziarz et al., 2016), Wordnet Libre du
Français (henceforth, WOLF), Multilingual Cen-
tral Repository (henceforth, MCR) (Gonzalez-
Agirre et al., 2012), Japanese Wordnet (hence-
forth, WNJA) (Bond et al., 2008), Wordnet Ba-
hasa (WNB) (Bond et al., 2014), and Chinese Open
Wordnet (henceforth, COW) (Wang and Bond,
2013). The wordnets are listed in Table 2 to-
gether with languages they represent, number of
lemmas from wordnets and corpus coverage. They
all appear in the Open Multilingual WordNet 1.09

(Bond and Foster, 2013) and are thus inter-linked
via PWN. The numbers are given with the exclu-
sion of multi-word lexical units and synsets not
linked to Princeton WordNet and, hence, not linked
to CILI.

3.2 Data sets: Corpora
To test Zipf’s meaning-frequency law, we have in-
spected two types of text data sets: (i) general
corpora for English, Spanish, French, Portuguese,
Chinese, Japanese and Polish built at Centre for

9http://compling.hss.ntu.edu.sg/omw/



wordnet lang. #S #L poly.
[103] [103] #S/#L

COW+ zh 8.1 3.2 2.53
WNJA jp 158.1 92.0 1.72
MCR es 57.8 36.7 1.58
OpenWN-PT pt 74.0 54.0 1.37
plWN+ pl 288.4 191.8 1.50
PWN+ en 218.6 159.4 1.37
WNB id 95.3 26.9 3.54
WOLF fr 102.7 55.4 1.85

Table 2: Data sets: OMW wordnets. Symbols:
COW - Chinese Open Wordnet, WNJA - Japanese
Wordnet, MCR - Multilingual Central Repository,
OpenWN-PT - Open Portuguese Wordnet, plWN
- Polish WordNet, PWN - Princeton WordNet,
WNB - Wordnet Bahasa, WOLF - Wordnet Libre
du Français; #S - number of senses, #L - number
of lemmas, poly. - average polysemy; + – wordnet
taken in whole. Please note that for most wordnets
we have taken only PWN equivalents (connected
via (C)ILI). All numbers are given for one-word
lexical units only.

Translation Studies, University of Leeds10, and at
Wroclaw University of Science and Technology,
Poland,11 (Broda et al., 2010), as well as (ii) a part
of the NTU-MC, containing two Sherlock Holmes
stories and their translations into Indonesian, Chi-
nese and Japanese, henceforth: SH (Bond and Tan,
2012). All used frequency lists are available under
open licences.

Corpus statistics are presented in Table 3. Most
general corpora are collections of Web documents
(marked as IC) gathered by Web crawling within
the WaCky project (Baroni et al., 2009), covering
100–300 million running words each. The Web as
a Corpus approach was also used to make a corpus
of Polish, the largest one, comprising almost 2 bil-
lion words, the source of lemma frequency list in
the case of Polish (Maziarz et al., 2016). To anal-
yse the impact of the used corpora on our results
we made use of frequency lists for Reuters Corpus
(a collection of news from Reuters, RC) and Giga-
word Corpus for Chinese (henceforth: GC)12 Fre-
quency lists for Chinese were word form based,13

10http://corpus.leeds.ac.uk/list.html, CC-BY.
11In the case of Polish, http://nlp.pwr.wroc.pl/en/tools-and-

resources/resources/frequency-list CC BY-NC-SA 3.0
12The selection contains only news which makes it compa-

rable to the Reuters Corpus.
13Chinese has practically no inflection

corpus size min f L cov.
[109] [103] [%]

en-IC .18 218 14.5 72
en-RC .10 1,100 3.8 70
pl-IC 1.80 10,972 8.8 88
es-IC .14 248 7.2 48
fr-IC .18 2,080 4.3 86
pt-IC .19 2,400 4.0 80
zh-IC* .28 183 11.0 22
zh-GC* .24 377 7.0 28
jp-IC .25 567 10.0 67
en-SH .02 1 2.8 56
id-SH .01 1 1.8 48
jp-SH .03 1 3.1 37
zh-SH .02 1 3.8 67

Table 3: Data sets: corpora. Symbols: en - En-
glish, es - Spanish, id - Indonesian (Bahasa), jp -
Japanese, fr - French, pl - Polish, pt - Portuguese,
zh - Chinese (Mandarin); IC - internet corpus, RC
- Reuters Corpus, GC - Gigaword Corpus, SH -
NTU-MC subcorpus of Sherlock Holmes stories;
* - word frequency list; f – corpus frequency, L –
number of lemmas given for frequency lists united
with each wordnet list, cov – coverage of the orig-
inal frequency list as covered by a particular word-
net.

whereas all the rest of the lists contained lemma
frequencies.

In order to make sure that our lists contain only
content words we threw out all words of rank 100
and above (rank i ≤ 100). On the other hand,
all frequency lists were shortened at different cut-
off points. For instance, the Reuters Corpus was
clipped down to the rank i = 5,000 (1,100 oc-
currences in the corpus), while Chinese Gigaword
corpus was cut at the rank i = 25,000 (377 occur-
rences). Intersections with wordnets’ lemma lists
gave as a result a similar order of magnitude of the
resulting lists for all languages (5–15×103). These
lists had quite good coverage of the original cor-
pora frequency lists (on the average 70-80%, with
the exception of Chinese corpora, which had poor
coverage of 20-30%).

The final analysis was conducted on a rela-
tively small multilingual SH corpus. The Sherlock
Holmes subcorpus of the NTU-MC consists of two
of Conan Doyle’s short stories (The Adventure of
the Speckled Band, 1892, and The Adventure of the
Dancing Men, 1903/1904) annotated with wordnet



senses. The coverage appears low, but this is an
undercount, some concepts cover multiple words
(especially in Japanese, where the segmenter seg-
ments to morphemes).

Apart from nouns, adjectives, verbs and ad-
verbs, the annotation also included pronouns, so
to make the lists more comparable to those made
out of general corpora, the top of all lemma fre-
quency lists, comprising mostly function words,14

was cut saving words less frequent than 100 occur-
rences (f < 100).15 The intersection with word-
nets’ lemma lists was also comparable to that of
general corpora (2–4×103, cf. Tab. 3, SH rows).

3.3 Constructing rank bins
The original Zipf’s work on meaning-frequency
dependency was in fact the research on averaged
values of sense number and ranks. Ilgen and
Karaoglan (2007) and Casas et al. (2019) proved
that the relationship is strong for larger bins, but
becomes more and more relaxed for smaller fre-
quency bins.

Since our frequency lists are intersected with
wordnet lemma sets, some ranks from the origi-
nal corpus lists occasionally fall out, so we receive
gaps within continuous stream of ranks. If a corpus
coverage by each intersection set (see Table 3) is
close to 80%, on the average every fifth rank darts
out. This is the reason why we cannot take a final
intersected corpus-wordnet list and simply divide
it into bins of particular size. Instead, we ought to
deal with specific rank ranges.

The process of varying word bin sizes was
slightly different for general and Sherlock Holmes
corpora, thus we give their descriptions separately.

General corpora. We explored only nouns, ad-
jectives, verbs and adverbs, but omitted words of
ranks 1–100 in order to avoid introducing non-
content words into frequency counts.16 The bins
were collated for specific rank ranges (λ = 1, 50,
100, ..., 500). Since ranks 1–100 were intention-
ally omitted, we started our rankings in the best
case from i = 101. Similarly to Casas et al. (2019),
we constructed bins of the range λ such that a word

14In fact they are not strongly polysemous.
15For English, e.g., there were words I, be, you, he, we,

say, she, this, not; while for Indonesian lemmas – -nya (as a
pronoun and an article), itu (a pronoun/article), saya ‘I, me,
mine’, dia ‘he, she, it’, kami ‘we, our, us’.

16In his original paper, Zipf cut off the first 500 words,
claiming they were function words (Zipf, 1945). Limiting our
analysis to nouns, adjectives, verbs and adverbs would result
in a slightly different number of words in each bin.

with ith rank fitted jth bin if and only if the follow-
ing inequalities were fulfilled:

100 + λ · (j − 1) + 1 ≤ i ≤ 100 + λ · j, (4)

where j = 1, 2, 3, ..., round(nλ ), λ is a rank range,
I is a set of ranks i (i ∈ N, i > 100), and n is a
maximum rank.

Figure 1 illustrates the process of making the
frequency bins smaller and smaller and shows re-
gression lines for some successive rank bins in the
Reuters Corpus.
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Figure 1: Meaning-rank dependency for the
Reuters Corpus and PWN 3.1, with regard to word
bins of different rank range. Symbols: WB - word
bin λ = 10, 50, 100, 500 ranks. The slope coeffi-
cient −γ equals -0.42 for λ = 500.

Sherlock Holmes stories. We explored again
only nouns, adjective, verbs and adverbs, but threw
out words of frequencies greater than a hundred oc-
currences in a corpus. The bins were collated for
the following rank ranges: λ = 1, 3, 5, ... 99. We
construct such bins of the range λ that a word with
ith rank fitted jth bin if and only if the following
inequality was fulfilled:

(λ · (j − 1) + 1 ≤ i ≤ λ · j) & (fi < 100), (5)

where j = 1, 2, 3, ..., round(nλ ), λwas a rank range,
I was a set of ranks i (i ∈ N), and n was a max-
imum rank, fi was a frequency count for the ith

word.

3.4 The log-log model
We investigated the weak version of Zipf’s
meaning-frequency law in the form of Eq. 3 by
changing values of the rank range λ from large bins



to small. We aimed at discovering the determina-
tion coefficient R2, as well as the slope coefficient
−γ for largest bins. R2 values were used previ-
ously as a measure of model fit (Zipf, 1945, 1949;
Edmonds, 2004; Ilgen and Karaoglan, 2007; Casas
et al., 2019). We checked also the slope coefficient
non-zeroness with the t-Student test.

To avoid any possibility of infecting our model
with correlated errors, we also inspected residu-
als with the Shapiro-Wilk statistics, as suggested
by Altmann and Gerlach (2016). The Shapiro-
Wilk test is the most powerful normality test avail-
able now to researchers. Originally designed for
small samples, now it is applicable also to samples
up to 5,000 observations (Razali and Wah, 2011).
Hence, if a model was constructed on a larger sam-
ple,17 we applied sampling 5,000 instances from
the original set of observations without replace-
ment.

As far as we know, this is the first time when
the residuals of the linear Zipfian log-log model
for meaning distribution are inspected for non-
normality.

4 Results
4.1 Predictive power
General corpora. Seven languages (five Indo-
European, Chinese and Japanese) and nine corpora
were checked for Zipf’s meaning-rank law (Eq. 3)
efficiency. Table 4 shows the results for λ = 500,
100, 50 and 1. Clearly the very same pattern that
was observed earlier in Ilgen and Karaoglan (2007)
and in Casas et al. (2019) is also visible in our data.
The bigger rank range λ is, the more efficient is
Zipf’s law. Making word bins smaller and smaller
leads to smallerR2 values, with a collapse at λ = 1
(no bins).

Figure 2 presents a more detailed picture of what
is happening (λ = 1, 50, 100, 150, ..., 500). The
determination coefficient R2 maintains its values
down to quite small bin sizes (λ equals 50-100) and
then rapidly lowers to poor percentages of 10-20%
of variance explained. The process is accompanied
by a non-normal behaviour of residuals (p-value
drops below the significance level of 1% at λ in
the range of 50–150).

In the case of Chinese corpora (the Internet cor-
pus, IC, and the news corpus, GC) R-squared val-

17It was possible for some general corpora in the case of no-
bins, see Table 3, the column L and rows en-IC, pl-IC, es-IC,
zh-IC, zh-GC and jp-IC.

rank range λ
data set γ500 n 500 100 50 1
en-IC+ .42 40 .98 .94 .90 .22
en-RC+ .40 10 .98 .90 .81 .11
pl-IC+ .22 20 .96 .83 .69 .06
es-IC+ .47 30 .94 .86 .81 .26
fr-IC+ .51 10 .98 .94 .90 .04
pt-IC+ .32 10 .96 .88 .77 .09
zh-IC* .22 100 .86 .61 .45 .06
zh-GC* .21 50 .86 .56 .40 .06
jp-IC+ .26 30 .94 .83 .72 .08
tr-B .42 27 .97 .94 .89 —
tr-G .39 45 .89 .70 .66 —
en-CH .38 19 .98 .86 — —
nl-CH .25 5 .99 .78 — —
es-CH .27 7 .95 .59 — —

Table 4: Loss of Zipf’s meaning-rank law pre-
dictive power in terms of determination coefficient
R2 with regard to different rank bin sizes (λ = 500,
100, 50, 1). Symbols: γ500 marks the slope coef-
ficient of the regression line for λ = 500, ‘n’ is
number of rank bins used for calculating γ; ‘tr-B’
and ‘tr-G’ denotes BilTD and GozD Turkish cor-
pora, respectively, in Ilgen and Karaoglan (2007),
‘*-CH’ marks the CHILDES corpus in 3 language
versions: English (en), Dutch (nl) and Spanish
(es), taken from Casas et al. (2019, Tab. 1, 2); we
have chosen only values for child language.

ues are smaller as compared to other languages. It
becomes clearer why it is so when one compares
the coverage of both corpora by the Chinese Open
Wordnet (Tab. 3), which is relatively small (cov-
erage is between 20-30%). For most languages,
the coverage is much higher resulting in small dif-
ference between real bin size and the face value λ
(they differ by one-fifth). For Chinese, the propor-
tion is much worse and the real bin size might be
on the average only one-third of the nominal value.
Simply when looking at Chinese data we look at
much smaller bins.

Sherlock Holmes stories. In Table 5 we pro-
vide the actual R2 values for the NTU-MC sub-
corpus of Holmesian stories. The gradual loss of
Zipf’s law predictive power is clear – the smaller
a bin is the lower the correlation coefficient be-
comes. Contrary to the results for general cor-
pora/wordnets coupling, the final variance amount
explained by Zipf’s model is not very low.

The magnitude of the effect itself might be hid-
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Figure 2: Loss of Zipf’s meaning-rank law predic-
tive power in terms of determination coefficientR2

(blue line) with regard to different frequency bin
sizes (λ = 1, 50, 100, ..., 500). With pink line we
mark p-values of Shapiro-Wilk normality test for
residuals of the model.

den just by these relatively large correlation values.
It remains in agreement with our expectation about
how the dependency should act in real texts. The
meaning number space is much lower than in the
case of comparing general corpora and wordnets,
and there is an upper limit imposed on the number
of meanings equal to the frequency itself.18

The real problem with taking full frequency
lists becomes obvious if we inspect the meaning-
frequency relation for f > 0 (Figure 3). Despite
the fact that R-squared values are very high, residu-
als of each model are not normal (p-values < 1%),
leading to the presumption that the long tail of
words occurring in usage only once per a corpus
forces residuals to be correlated.19 In the case of
meaning-rank dependencies, this issue is hidden
with the common rank ordering practice that we
have followed.

All words that occur in a corpus once receive
consecutive ranks, rescuing model residuals from
total disaster. To be clear, this proves that for SH
corpora containing hapax legomena (like in Table
5) Zipf’s law does not function properly, even for

18We cannot get more senses of a lemma than the number
of its occurrences in a text.

19Since we have a huge amount of points with co-ordinates
fi = 1 and mi = 1.

data set γ100 n rank range λ
100 50 10 1

en-SH .43 28 .96 .94 .86 .44
id-SH .36 18 .94 .90 .81 .34
jp-SH .31 31 .96 .94 .83 .37
zh-SH .33 38 .94 .92 .85 .42

Table 5: Loss of Zipf’s meaning-rank law pre-
dictive power in terms of the determination coeffi-
cient R2 with regard to different rank bin sizes (λ
= 100, 50, 10, 1, f > 0 in all cases). The symbol
γ100 marks the absolute value of the negative slope
coefficient of the regression model for λ = 100.
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Figure 3: R-squared values of Zipf’s meaning-
frequency linear model with regard to different
word bin sizes (λ = 1, 3, 5, ..., 99) for whole SH
corpora (with hapaxes, f > 0).

mean values.20

It is justified to test Zipf’s law for words occur-
ring in a corpus more than once. This compromise
gives us also an opportunity to compare such short-
ened lists for Holmes stories with largely abridged
lists from general corpora. Figure 4 presents the
data. After removing hapaxes, the Zipf’s model
starts to behave properly: p-values soar above 1%,
R-squared values become large when rank ranges
are bigger than 20.

4.2 The slope
General corpora. Table 4 provides slope coeffi-
cients γ for the largest bins (λ = 500) in Inter-
net and news corpora. In more detail, we illus-
trate it with Figure 5 (for different bin sizes). All
γ values occurred to be statistically significant in

20This extraordinary property of Zipf’s law does not con-
tradict the results obtainable from general corpora, since they
are always shortened with the least frequent lemmas, possibly
having hidden this phenomenon out of sight of researchers.
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Figure 4: R-squared values of Zipf’s meaning-rank
linear model with regard to different word bin sizes
(λ = 1, 3, 5, ..., 99) for f > 1.

t-Student test (p-values are much smaller than the
significance level of 1%). It is obvious from the
data that the coefficients are mostly less than 0.5 –
the value hypothesized by Zipf himself. The values
seem also quite stable concerning the vast range of
rank bins, however it is not obvious whether slope
coefficients are independent of the corpora and fre-
quency lists used.
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Figure 5: Stability of the slope coefficient−γλ val-
ues (blue line) with regard to different frequency
bin sizes (λ = 1, 50, 100, ..., 500). Frequency lists
are taken in as a whole. With the pink line we mark
p-values of t-Student test for non-zeroness of the
slope values.

Our frequency lists vary with respect to length,
they also come from differently sized corpora (see

Table 3). To overcome this problem, we decided to
confront languages using relative frequencies. We
have chosen the frequency of 12.5 occurrences per
million in a corpus as a maximum rank for the need
of comparison. The abridged lists cover the most
frequent vocabulary of each language, i.e., the top
4000–6000 most frequent lemmas. Table 6 pro-
vides Zipfian curve coefficients for λ = 200 and
the shortened frequency lists. The coverage of fre-
quency lists for most languages is very good (80–
90%).

Languages differ in terms of regression coeffi-
cients. The clear dependency links the slope value
and the intercept. The more steep a regression line
is, the bigger an intercept becomes. This cross-
lingual pattern finds its counterpart in each lan-
guage data.

corpus max. cov. poly. γ200 I
rank [%] med(m)

en-IC+ 4856 86 4(5.5) 0.40 2.0
en-RC+ 4501 77 4(5.8) 0.38 2.0
pl-IC+ 6038 89 3(3.9) 0.22 1.3
es-IC 4575 78 4(4.7) 0.29 1.6
fr-IC 4672 87 5(7.1) 0.48 2.4
pt-IC 4987 79 3(3.4) 0.30 1.5
zh-IC+ 6521 48 2(2.6) 0.08 0.7
zh-GC+ 6486 45 2(2.7) 0.19 1.1
jp-IC 4681 76 3(4.3) 0.19 1.2

Table 6: Comparison of Zipfian curve coeffi-
cients: the slope −γ200 and the intercept I . The
cut-off point is the relative frequency of 12.5 oc-
currences per million in a corpus. For different lan-
guages and corpora the cut-off maximum rank dif-
fer. We have chosen λ = 200 to ensure normality
of residuals. Symbols: + - wordnet taken in whole
(not only ILI part), cov. - the coverage of a fre-
quency list by wordnet lemmas, poly. – median of
(med) / mean (m) polysemy (senses per lemma).

Figure 6 shows the pattern more thoroughly
by presenting regression slope and intercept for
different cut-off ranks (maximum ranks) in each
language/corpus. Dashed vertical line represents
the maximum rank corresponding to relative fre-
quency of 12.5 occurrences per million (chosen as
a basis of comparison in Table 6). Coefficients may
change their values a lot, as Spanish or French data
proves. Yet again, both regression coefficients re-
act inversely to elongating frequency list. While
intercepts grow, simultaneously slope coefficients



−γ200 drop. This reproduces the fact that length-
ening frequency lists is the same as adding less and
less polysemous lemmas.
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Figure 6: Variation of the slope coefficient −γ200
values (blue lines) and intercepts (pink lines) with
regard to different frequency list lengths (for one
particular bin size, λ = 200). With dashed blue
lines we mark ranks corresponding to the relative
frequency 12.50 occurrences per million.

It is rather unlikely that each language will fi-
nally reach its own Zipfian γ = −0.5 magical
zone, even for very long frequency lists. Sher-
lock Holmes stories give us a unique opportunity
to check slope coefficient values under controlled
conditions.

Sherlock Holmes stories. As in the case of
general corpora, slope coefficients present stable
behaviour while changing frequency bin sizes for
corpora abridged by hapaxes (Fig. 7). Comparing
them to values obtained for general corpora and de-
scribed in the literature shows that although they do
change, the change rate is rather moderate (close to
±.10).

Consider the γ values for English. In Zipf’s ex-
periment it was .47, Edmonds (2004) estimated it
at .40 (Tab. 1), in CHILDES corpus Casas et al.
(2019) found it to be close to .38, in Leeds cor-
pora it equals .40/.42 (Internet) and .38/.40 (news),
while in Sherlock Holmes stories it is .43. In the
case of Japanese, we got .19/.26 in the Leeds cor-
pus and .31 in Sherlock Holmes, not so distant.
For Chinese the values change bit more (zh-IC:
.08/.21, zh-GC: .19/.22, zh-SH: .33), but this might
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Figure 7: Stability of the slope coefficient−γλ val-
ues (blue line) with regard to different frequency
bin sizes (λ = 1, 3, 5, ..., 99) for f > 1 (no hapax
legomena). With the pink line we mark p-values
of t-Student test for non-zeroness of the slope.

be caused by the fact that the coverage for Leeds
corpora are too low. For Spanish we found the
slope coefficient close to .29/.47 in our data, while
(Casas et al., 2019) obtained value of .27. The dif-
ference might be explained with the poor coverage
of the Spanish child speech corpus with Multilin-
gual Central Repository (only 13%, ibidem).

5 Conclusions

We have presented novel, statistically valid, empir-
ical evidence for the weak version of Zipf’s law
of meaning distribution on eight languages from
four distinct language families (Indo-European,
Japonic, Sino-Tibetan and Austronesian).

Zipf’s law functions pretty well for mean val-
ues in terms of high determination coefficient R-
squared, and non-zero slope coefficient γ (stable
over the vast range of λ values, but changing while
altering frequency lists). The law is, however, in-
efficient for individual lemmas, because of the lack
of model residual normality, despite non-zero cor-
relation coefficient R values.

In the case of Sherlock Holmes stories, this Zip-
fian catastrophe does not manifest itself only while
shifting from bins to individual lemmas, but - sur-
prisingly - also within each whole unabridged cor-
pus containing hapax legomena, both for smaller
and larger bins.

Slope coefficients that Zipf tended to treat being
close to -0.5, in fact, vary largely from language to
language, and corpus to corpus, ranging from -0.5
to -0.1.
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