
Incorporating Constituent Structure Constraint into Discriminative Word
Alignment

Wen-Han Chao
National Laboratory for Parallel

and Distributed Processing,
Changsha, China
cwh2k@163.com

Zhou-Jun Li
School of Computer Science & Engineering,

Beihang University,
Beijing, China

lizj@buaa.edu.cn

Abstract
We introduce an approach to incorporate the constituent structure constraint into a discriminative word alignment model by presenting
the constituent constraint in an explicit way and using three operations to ensure the constraint when search the best word alignment.
In this way, we will be able to make use of the weak order constraint induced by the inversion transduction grammars (ITG), as well as
the flexibility of the discriminative word alignment framework to incorporating any other useful features.

1 Introduction
Most of recent statistical machine translation systems are
based on word alignment, in which word re-ordering and
multi-word alignment are two major problems. Most of
initial work is derived from IBM models, or HMM model
and Model 6 (Brown et al., 1993; Vogel et al. 1996; Och
and Ney, 2003), which product good results on large
sentence aligned bilingual corpora, especially when the
two languages are closely related. But these generative
models are complex, so that it is difficult to train the
parameters in them, and incorporate new useful
knowledge into them.

In order to restrict the word order further, especially
considering the word order problem in two languages
which are not closely related, many researchers introduce
syntactic knowledge in word alignment, which mainly
adopts a tree structure (Yamada and Knight, 2001; Cherry
and Lin, 2003; Gildea 2004 etc.). In these models, a
syntactic tree of one sentence is parsed which is used to
constrain the words order in another sentence; or two trees
are both parsed, and then the word alignment problem is
to find a mapping between the nodes in the trees.

But in some languages, the syntactic trees are difficult
to achieve, or the syntax between two languages are very
different, so that the nodes in both trees are not easy to
map. Accounting for these problems, Wu(1997) proposes
a stochastic inversion transduction grammars(SITG), in
which two simple operations are used to reorder the words,
and in the end it will produce a binary tree. This model
does not use traditional syntax, and the word alignment
only needs to satisfy the constituent structure, so that it
achieves a great flexibility while preserving a weak but
effective word order constraint. But this model uses a
dynamic programming algorithm to search the best word
alignment, which complexity is)TVO(N 333 , where V, T
are the sentence lengths , when V and T are larger than
100 or even 50, it will be hard to bear in general PC
machine. Besides, this model is also difficult to use other
knowledge.

In order to incorporate various knowledge into the word
alignment effectively, some researchers (Liu et al., 2005;
Moore, 2005; Taskar et al., 2005) almost at the same time
propose a discriminative word alignment framework,
where the knowledge, such as POS and lexicon, are cast
as some features. So that, when solving the word

alignment, we only needs to select the features and train
the corresponding weights of them. Their work shows that,
when the features are selected appropriately, even some
easy features will produce good results. Recently, the base
feature in most of these models is the word correlation
model, and then incorporating some other easy features,
such as jump distance, POS etc.

In this paper, we propose a novel method, which will
represent explicitly the constraints located in constituent
structure produced by ITG. And then we can design more
flexible search algorithm to find the best word alignment
which is consistent with the constraints. To combine with
other knowledge, we transfer the constituent structure
constraint to a feature, which will be incorporated easily
into a discriminative word alignment framework.

In the rest of this paper, we first introduce the
constituent structure constraint in the ITG model in
Section 2, and then describe how to transfer the constraint
to four easy judgements in Section 3, and design a beam
search algorithm to find the best word alignment which
satisfies the constituent structure constraint in Section 4.
We then present how to incorporate the constituent
structure feature into a discriminative word alignment
model in Section 5. Section 6 shows the results of the
experiments, and we conclude in Section 7 and 8.

2 The Constituent Structure Constraint
Wu(1997) proposes a simple ITG which only consists of
five types of rules:

]A A[A a⎯→⎯
><⎯→⎯ A A A a
ji/vu A bij⎯→⎯

εε /u A i
bi⎯→⎯

j/v A jb εε⎯→⎯

Where A is the only non-terminal symbol, and [] and <>
represent the two operations which generate outputs in
straight and inverted orientation respectively. iu and jv
are terminal symbols, which represent the words in both
languages, and ε represents the null word. The a , ijb , εib
and jbε are the probabilities of productions. The last three
rules are called lexical rules.

During the process of word alignment, this model will
generate a binary branching tree, but the constituents are
not the traditional ones, they only satisfy the following
basic constraints:

1) The words aligned are consecutive respectively.
2) There is a sub-tree for each constituent, it is a

hierarchical structure, and the alignment is also
hierarchical;

3) Each node in the sub-tree for the constituent A can
not participate in another sub-tree for constituent B,
unless B is an ancestor of A.

Although these constraints are easy, by using [] and <>
operations, the model can almost interpret arbitrary word
alignment, in which the word order in both sentence may
vary greatly, as long as the word alignment satisfies the
constituent structure constraints. So the model will be
flexible to handle the words order during word alignment,
especially when the two languages are very different in
word order, such as Chinese and English. Figure 1 (a) and
(b) illustrate a word-alignment and the corresponding
constituent structure tree.
 Besides, if the iu and jv are multi-words, the model
will be able to produce many-to-many word alignment,
but the multi-word must be consecutive.
 Wu(1997) gives a dynamic programming algorithm for
the ITG, which complexity is)TVO(N 333 , which will
slow down quickly when the sentence length becomes
large. And how to incorporate effectively other useful
knowledge into the model is another problem.

So we wish find a method, which can make use of the
flexibility and effective word order constraint in the ITG
while decreasing the complexity when searching word
alignment at the same time, and can integrate easily the
constituent structure constraint with other useful
information.

 我 再次 检查 我 的 包

I checked my bag once again

我 再次 检查 我 的 包

I checked my bag once again

(b) An ITG tree for the word alignment (a)

我/ I 再次/once again 我 的 / my 包/ bag检查/ checked

(a) A valid word alignment example

(c) An invalid word alignment example

Figure 1 A valid word alignment (a) and the
corresponding ITG tree (b) where the line between the

branches means an inverted orientation, otherwise a
straight one, and an invalid alignment example, where the
dot line is an invalid link (3-c) when given the other links.

 3 Transforming the Constraint

In this paper, we use >< EC, to represent a sentence pair,
C and E are the sentences in both languages respectively,

m
m ccccC211 == and n

n eeeeE211 == . We define a

link),;,(tsjia if the multi-words j
ic and t

se are

correspondences for each other, j
ic and t

se may consist of
zero, one or more words. If 0≠= ji or 0≠= ts , they
are single words respectively, and if one of the 0== ji
or 0== ts exists, a is a null link. So, a word alignment
A for the >< EC, is a set of links: },...,,{ 21 naaaA = .

For the convenience,),;,(11111 −−−−− kkkkk tsjia and
),;,(kkkkk tsjia refers that the ka is behind the 1−ka in

the sentence C , i.e. 1−> kk ji . But it is not sure in the
sentence E , i.e. ks may be larger or smaller than 1−kt .

We also define a group),;,(gggg
l
k tsjigag == ,

which is the combination of ka , 1+ka ,… la , where

gg ji ... and gg ts ... is consecutive and for any other
Atsjia xxxxx ∈),;,(and },{ lkx ∉ , it must be φ=∩ gax ,

i.e. ggxx jiji ..., ∉ and ggxx tsts ..., ∉ . So a group is
consecutive and integrated.

We can combine a group),;,(gggg tsjig with a link
),;,(xxxxx tsjia , φ=∩ gax , to form a larger group

),;,(' '''' gggg tsjig , in which),min(' xgg iii = ,
),max(' xgg jjj = ,),min(' xgg sss = , and),max(' xgg ttt = .

There may exist a link ya , φ≠∩ 'gay , but 'gay ⊄ . To
keep the integrality of the group 'g , we need to combine

'g with the ya , this process will continue until the formed
group is integrated. The COMBINE procedure in Figure 3
shows the detail.

If φ=∩ gax and when combining xa with g , it needs
not add other link, i.e. the),;,(' '''' gggg tsjig mentioned
above is an integrated group, we say that the xa is
independent of g .

We define our word alignment problem as finding the
best A that maximize),|Pr(ECA . And the process of
forming a word alignment is: A is equal to φ at the
beginning, and then add one a each time }{aAA ∪= ,
until no new a can be added anymore.

For each new added ka , we will verify whether ka is
valid. If it is not valid, it can not be added to A .

If φ=A , ka is valid.
If φ≠A , there may exist at most two neighbors 1−ka

and 1+ka which are near ka and may form two groups
1−kg or 1+kg respectively. We say the new ka is valid,

when there exists at least one of groups 1−kg or 1+kg ,
which the new ka is independent of , so that it may
combine with the group to form an larger integrated group
without involving other links.
 There are four types of valid combinations as Figure 2
shows, in which ka is independent of group 1−kg or

1+kg .

 gk-1 ak

2-(a)

gk+1 ak

2-(b)

gk-1 ak

2-(c)

gk+1ak

2-(d)

Figure 2 Four valid combination types

Where 2-(a) and 2-(b) represent that ka is able to
combine the 1−kg and 1+kg in a straight orientation; and
2-(c) and 2-(d) in an inverted orientation. Note, the groups
may be any groups formed by 1−ka or 1+ka , i.e. their size
is arbitrary, as long as the ka is independent of them. If
the new ka accords with at least one of these types, we
say it is valid.

Correspondingly, there are four types of invalid
combinations as Figure 3 shows.

 gk-1 ak

3-(a)

a'

3-(b)

gk+1 ak a' gk-1 ak

3-(c)

a' gk+1ak

3-(d)

a'

Figure 3 Four invalid combination types

Where the 'a results in that the ka can not be combined
into groups.

In this way, our word alignment task is transferred to
find a A in which each Aa ∈ accords with at least one
type of the combinations in Figure 2.

Now, we will describe further how to verify the validity
of the new ka in a straight way. Observing that for each
combination type in Figure 2, after combining the ka and
the group, the new group formed will take the ka as the
boundary. So, a simple way is to combine ka with 1−ka
or 1+ka directly, and verify whether the last formed
integrated group exceeds the scope of ka . If it exceeds,

ka does not accord with the combination, otherwise ka is
valid. For each type in Figure 1, the boundary of the new
group that needs to be verified is different. For example,
assuming the),;,(tsjiak and the last formed group

)',';','(' tsjig , in 2-(a), we should verify whether
)'(jj ≤ and)'(tt ≤ ; in 2-(c), we should verify whether
)'(jj ≤ and)'(ss ≤ .

So, we achieve a simple method to verify if the new ka
is valid. Figure 4 gives the verifying procedure, which
complexity is O(N) , N is size of A , which is proportional
to the lengths of the sentences.

Now, we define the process of word alignment more
clearly as follows:
1. Initial φ=A , and a candidate set M contains all

the possible a .
2. We select one a from the M each time, and

remove it from the M .
3. Verify whether the new a belongs to one of the

four types in Figure 1. If TRUE, then }{aAA ∪= .
4. Iterate Step 2 and 3, until no other a can be added

to A or φ=M .

 Procedure VERIFY_LINK_VALID

Input: A and),;,(kkkkk tsjia

Output: TRUE or FALSE

Begin
If φ=A , return TRUE ;

Find the),;,(11111 −−−−− kkkkk tsjia and),;,(11111 +++++ kkkkk tsjia ;

If 1−ka exists Then

Initialize 11 −− = kk ag ;
Combining the 1−kg with ka to form a new group)',';','(' tsjig ;
if)(1−> kk ts then

if)'(kjj ≤ and)'(ktt ≤ then return TRUE;

if)(1−< kk st then
 if)'(kjj ≤ and)'(ssk ≤ then return TRUE;

If 1+ka exists Then

Initialize 11 ++ = kk ag ;
Combining the 1+kg with ka to form a new group)',';','(' tsjig ;
if)(1 kk ts >+ then

if)'(kii ≥ and)'(kss ≥ then return TRUE;
if)(1+> kk ts then

 if)'(kii ≥ and)'(ttk ≥ then return TRUE;

 return FALSE;

End

Procedure COMBINE

Input: a group),;,(tsjig , a link),;,(xxxxx tsjia and A

Output: a new group)',';','(' tsjig

Begin
);,min(' xiii ←

);,max(' xjjj ←
);,min(' xsss ←
);,max(' xttt ←

);',';','('' tsjigg ←

if Atsjia yyyyy ∈),;,(, φ≠∩ 'ga y and 'ga y ⊄ then

return),,'(COMBINE' Aagg y←

 return)',';','(' tsjig

End

Figure 4 Procedure to verify the validity of ka

And we will prove that the word alignment produced

through the above process will satisfy the constituent
structure constraint in ITG.

Theorem 1
If each new added a accords with any of the four
combination types in Figure 2, during the process word
alignment, the word alignment produced in the end will
satisfy the constituent structure constraint in ITG, i.e. it
will form a constituent structure tree. And, any word
alignment generated by the ITG will be able to be
produced by the above process, i.e. adding a new a which
belongs to one of the four combination types in the Figure
1 at each time.

Proof
1．⇒

At the beginning, φ=A , so any new),;,(tsjia will be
valid, i.e. we can add a to A . Here we can add a new
production to generate it:

t
s

j
i e c / A bijst⎯⎯→⎯ .

where j
ic and t

se are the multi-words in both languages,
and they are generated according to probability ijstb .

Assume that the A , formed previously by adding a ,
satisfies the constituent structure constraint, i.e., it forms a
constituent tree. Now we will add a new a , if it is one of
the four types in Figure 2, then there exists a group g in
A , which is able to combine the a without involving the

other links, i.e. agg +=' . For g satisfies the constituent
structure constraint, so there exists a production to
generate g:

 g A bg⎯→⎯ ,
We can add three new productions to replace this
production to generate 'g :

]A A[A a ⎯→⎯ or ><⎯→⎯ A A A a ,

 g A bg⎯→⎯

 a A ba⎯→⎯
If g and a is combined in a straight orientation then we
use [] production and in an inverted orientation use <> .

In this way, the new }{aAA += generates a
constituent tree and satisfies the constituent structure
constraint. □

2. ⇐
For a word alignment with constituent structure in ITG,
we can get all its leaves firstly, and then generate one a
for each leaf in the left to right order and add a to A .
Initially, the φ=A , so the first added a is valid.
Assume that all the previously added a belong to one of
the four types of combinations in Figures 2. When adding
a new a , the relationship between it and the previous 'a
may be:
1) They belong to a same parent node, i.e. they belong

to a same constituent, and are the two branches of the
constituent respectively. 'a can form a group which
only include 'a and is independent of a . So they
accord with the 2-a or 2-c combination type, and a is
valid.

2) Their parent nodes are not same, but we can always
find a node which are the same ancestor node of them,
and it corresponds to the minimal constituent which
includes both of the a and 'a . At this time, a and

'a belong to the two branches of the constituent
respectively. So the branch where 'a locates can
form a group, which is independent of a . So a and
the group accord with the 2-a or 2-c combination type,
and a is valid.

So all word alignment generated by ITG can be produced
by a process by adding a , which accords with one of the
combination types in Figure 2. □

4 Alignment Search
In order to make use of the constituent structure constraint
in the process of searching word alignment, we define the
following three operations:

1. Verify Operation: verify operation is the most
important operation, which will determine whether
the new a is valid. Verify operation will pass the a
through the procedure in Figure 4, to determinate
whether the a belongs to one of the combination
types in Figure 2.

2. Insert Operation: add the new a into A , i.e.
}{aAA += .

3. Combine Operation: combine the new added a
with the adjacent group to form a larger group.
During the process of word alignment, if),;,(tsjia
is adjacent with a group),;,(yxvug , we will merge
them. The adjacency means the distance between a
and g is zero in both sentences. There may be four
cases corresponding with the four combination types.
For example, in the first type, if 1+= vi and

1+= ys , then we say that a is adjacent with g ,
and combine them to form a larger group

),;,(' txjug . And if two groups are adjacent, they
can be merged into a larger group, too. After the
word alignment, there may exist null links, so we
need to combine groups which are not adjacent. At
this time, each null link can be combined with any
adjacent group. With the combine operation, we can
output the constituent structure of the word
alignment in the end.

By transferring the constituent structure constraint to

the above three operations, we will be able to use any
search algorithm to find the best word alignment. Here we
design a fast beam search algorithm, which derived
partially from the competitive linking algorithm
(Melamed 2000), see Figure 5 for detail.

We collect firstly all possible a between the words in
>< EC, to form a candidate set M , and sort them by the
)(ascore , which may be the correlation probability of the

words in a , and depends on the models we will used.
We then use the process defined in the Section 3 to

produce a word alignment by using the Verify, Insert and
Combine operations. For some different candidates may
have an equal or near score, there may be many branches.
But we will select the b branches to continue, and prune
the branches by calculate the:

∑=
a

ascoreAscore))(log()(.

Our beam search algorithm has some characteristics:
Firstly, it use the verify operation to determine whether
the new a is valid, so the result word alignment is
satisfied with the constituent structure constraint.
Secondly, we use the combine operation when inserting
new a , so the corresponding constituent tree of the word
alignment will produced. Besides, our word alignment can
be many-to-many, as long as the words are consecutive.

The complexity of this beam search algorithm is
)O(bN 2 , where b is the beam size, and N is the smaller

sentence length in both sentences.

 Algorithm 1
Input: sentence pair >< EC,

Output: a best word alignment of >< EC,

Begin
φ=A , M , }{ABWA = , φ=NB , φ=ALIGNED

Do

For each A in BWA Begin

If (A has been all aligend) or (no other a can be used in M)

Then AALIGNEDALIGNED += ;

Get the next N-best a from M ;

For each a Begin

 If(Execute the verify operation) Then
 }{aAA ∪= ; Calculate)(Ascore ; ANBNB += ;

End

Remove A from BWA ;

 End

 Sort all A in NB

 Select the best b branches and insert them into BWA ;

 While (BWA is not NULL);

 Sort all A in ALIGNED ;

Return the best A

End

Figure 5 The alignment search algorithm

5 Discriminative Word Alignment
Given a >< EC, , a discriminative word alignment is to
find the best maxA , so that:

∑
=

=
n

i
ii

A
EACfA

1
max),,(maxarg λ

Where the if represents the feature and iλ is the
corresponding weight of the feature. This framework
makes it easy to combine various different knowledge in
the word alignment problem, by representing the
knowledge in the form of feature.

5.1 Features
In order to incorporate the constituent structure constraint
into the discriminative word alignment model, there are
two ways, the one is taking it as a search constraint, and
using the verify operation to determine whether the new
a is valid. Another way is to use a feature to represent this
constraint. We use the latter one and our model will
include the following features:
Constituent Structure Feature: count the number of the
a which violates the constituent structure constraint. To
ensure the result word alignment satisfies the cconstituent
structure, we set a very small negative weight for this
feature, so that the word alignment will not be used
whenever this feature occurs.
Conditional Probability Model: we use a conditional
probability as our base feature which accounts for the
word correlation,

∑==),|(log),|(log),,(ecapECAPEACf p .
Where),|(ecap is the alignment probability when c and
e co-occur. There are various models, such as the
Moore(2005),

),(
),(),|(

eccoocur
decalignecap −=

.

Where),(ecalign is the number of times that c and e
are aligned,),(eccoocur is the number of times they co-

occur, and d is a discount. Here we use the 2Φ suggested
by Gale and Church (1991), It is more robust because it
considers all four cells in Table 1, i.e. it also considers the
other alignments that c and e have participated in:

))()()((
)(),|(

2

dcdbcaba
bcadecap

++++
−= .

Table 1 An alignment contingency table (2*2)

Distortion Model: we count the jump distance for this
model:

∑=
i

id dEACf),,(.

Where the di represents the jump distance for each a ,
using one of the sentences as a reference. Our a is many-
to-many, such as),;,(tsjiak and)',';','(1 tsjiak − , if it is
a straight orientation, the 1'−−= tsdi ; or 1' −−= tsdi in
an inverted orientation.
Null word feature: we consider the effect for null
alignment, by counting the number of null words in the
word alignment.

 5.2 Search
We use a similar beam search to find the best word
alignment. But the)(Ascore is calculated as follows:

∑
=

=
4

1

),,()(
i

ii EACfAscore λ .

i.e., when adding a new a , we count the value for each
feature, and multiply the weight respectively, and add
them all to get the)(Ascore .

5.3 Training
The discriminative model needs to train the weights for
the features, and we adopts the same perception training
described in (Moore 2005) to train them, in which setting
a initial set of the weights, and iterating through a small
word-aligned development corpus for several times. At
each time, it inputs each sentence pair in order, searches
the best word alignment, and compares the features in the
auto-generated word alignment with the reference word
alignment. Then it updates the weights in the following
way:

)),,(),,((EACfiEACfi autorefii −+← ηλλ .

 c c¬
e),(ecaligna =),(ecalignb ¬=

e¬),(ecalignc ¬=),(ecalignd ¬¬=

Where η is the learning rate. In this way, we will get the
average weights over all the training data.

During our training process, we do not change the
weights of the constituent structure feature and the
conditional probability model, i.e., we only updates the
weights of distortion model and null word feature.

Besides, the conditional probability model may be
trained in various ways, but we use an iterate method as
follows:

1. Initialize the conditional probability model using
the 2Φ , where the),(),(eccoocurecalign = .

2. Train the weights of the current features.
3. Search the best word alignment for the training

corpus.
4. Update the conditional probability model using the

results in Step 3.
5. Iterate 2-4, until the model is converged or it meets

the specified number for iterating.

6 Evaluation
We trained our method and model on a sentence-aligned
bilingual Chinese and English corpus, which comprised
200,000 sentence pairs, and we also manually aligned
1,000 sentence pairs, in which 500 pairs of them were
selected as development set, which were used to train the
weights of our features, and the remained 500 pairs were
used as test data. The manually aligned sentence pairs
were aligned with constituent structure, i.e. they were
aligned hierarchically. Table 2 shows the statistics of them.

Table 2 Statistics of training corpus, development corpus

and test corpus

All the Chinese sentences are segmented using the
ICTCLAS (zhang et al., 2003). And the English sentences
are tokenized and stemmed, considering the Chinese word
has no morphologic change and our bilingual corpus is
relatively small. In this way the vocabulary size of
English corpus decreases and the frequency of the word
type increases.
 We adopted the same evaluation methodology to the
one in (Och and Ney 2003), i.e. recall, precision and
alignment error rate (AER) to evaluate our model:

||
||

S
SArecall ∩= ,

||
||

P
PAprecision ∩= ,

||||
||||1

SA
PASAAER

+
∩+∩−= .

Where A is the set of alignments generated automatically
by our word alignment system; S is the set of alignments
which are manually marked “sure” , P is the set of
alignments which are manually marked “possible” or
“sure”, then PS ⊆
 We prepared three experiments for comparison:
1. Training IBM-4 model on the training corpus using

GIZA++ (Och and Ney 2003) and testing it.
2. Training a generative model derived directly from

ITG, called HWA, where we consider only the
conditional probability model

∑=),|(log),|(log ecapECAP .
We iterate to train the model as follows: Firstly,
searching the best word alignment by Algorithm 1 in
Figure 5, using:

∑==),|(log),|(log)(ecapECAPAscore .
In this way, the word alignment will satisfy the
constituent structure constraint. Secondly, re-
estimating the model using the best word alignments.
If the model is converged or it meets the specified
number for iterating, the training stops. And we then
test this model using the same search algorithm.

3. Training the discriminative model in Section 5, called
DWA. And we also train the weights in the
development set. Finally, we test the model in the test
set.

The results of the above three experiments are showed in
Table 3.

Models Precision Recall AER
HWA
DWA

0.823
0.858

0.769
0.766

0.203
0.188

IBM-4 CE →
IBM-4 EC →
IBM-4 union
IBM-4 intersection
IBM-4 refined

0.721
0.772
0.704
0.787
0.815

0.708
0.702
0.719
0.738
0.754

0.285
0.263
0.288
0.237
0.215

Table 3 Comparison of results for three models

Where CE → denotes treating the English as the source
and Chinese as the target, and EC → is reverse. The
intersection, union and refined denote three methods
combining the alignments in both directions (i.e. CE →
and EC →) to improve the result (Och and Ney 2003).

As we can see, both HWA and DWA gives better
results than IBM-4, and the AER of DWA reduces about
7% than HWA. But the recall of DWA and HWA is
almost equal, while the precision of DWA increases about
4% than HWA. We conclude that the constituent structure
constraint is very effective to restrict the word order, and
by combining other knowledge with the constituent
structure constraint, we will improve the result further.

7 Related Works
Many researchers have proposed models to make use of
constituent structure or syntax to restrict the word order.
But our constituent structure is derived from ITG (Wu
1997), which is not the traditional syntactic structure, so
that it is very flexible to align two sentences with very
different word order.

 Chinese English
Sentences 200,000

Words 3,326,278 3,292,378
Training
Corpus

 Vocabulary 60,660 48,753
Sentences 500 Develop

Corpus Words 8,214 7,992
Sentences 500 Test

Corpus Words 8,066 7,997

One of the main differences between our work and ITG
is that we represent the constituent structure constraint
explicitly, while it is implied in the rules of ITG. So that
we can design some general search algorithms to decrease
the complexity while keeping the constituent structure. In
addition, we will be able to combine the constraint with
other knowledge easily.

Zens et al. (2004) provides a decoder which satisfies the
ITG constraint, their method is to ensure the fourth phrase
can be translated when given the first two translated
phrases, so it need to constrain the reordering of the third
phrase. However, in our word alignment, the fourth phrase
may be null aligned, so we just verify whether the current
link is valid or not when given the preceding links. If it is
invalid, it can not be added to the alignment, and the
words may be aligned to null word.

Our discriminative word alignment model is similar
with the other discriminative framework, except we
design a new feature, which will incorporate more
complex syntactic knowledge into the model.

8 Conclusions
We have presented a method to transfer the constituent
structure constraint located in the ITG to four simple
position judgement procedures in an explicit way. So, we
can make use of the constituent structure to restrict the
word order in word alignment easily. In this paper, we
propose a beam search to decrease the complexity for find
the best word alignment while preserve the constituent
structure constraint. In addition, the word alignment we
find is a many-to-many alignment, while the multi-words
must be consecutive.

We also design a feature to represent the constituent
structure constraint, so that we can incorporate it into the
discriminative model.
 The experiments show that the constituent structure is
useful for word alignment, and the results will be
improved by combining other features.

Acknowledgements
This work is supported in part by the National Natural
Science Foundation of China under Grant
Nos.60573057,60473057 and 90604007.

Bibliographical References
Peter F. Brown, Stepen A. Della Pietra, Vincent J. Della

Pietra, and Rorbet. L.Mercer. (1993). The Mathematics
of Statistical Machine Translation: Parameter
estimation. Computational Linguistics, 19(2):263–312.

Colin Cherry and Dekang Lin. (2003). A Probability
Model to Improve Word Alignment. In Proceedings of
the 41st Meeting of the Association for Computational
Linguistics, pp. 88–95.

Colin Cherry and Dekang Lin. (2006). Soft Syntactic for
Word Alignment through Discriminative Training. In
Proceedings of COLING/ACL 2006. pp. 105.-112.

Willam. A. Gale and Kenneth W. Church. (1991).
Identifying Word Correspondences in Parallel Texts. In
4th Speech and Natural Language Workshop, pages
152–157.

D. Gildea. (2004). Dependencies vs. constituents for
treebased alignment. In Proceedings of the EMNLP,
214–221, Barcelona, Spain.

 Yang Liu , Qun Liu and Shouxun Lin. (2005). Log-linear
Models for Word Alignment In Proceedings of the
43rd Annual Meeting of the Association for
Computational Linguistics, pp. 459–466.

I. Dan Melamed. (2000). Models of Translational
Equivalence among Words. Computational Linguistics,
26(2):221–249.

R. Moore. (2005). A discriminative framework for
bilingual word alignment. In Proceedings of HLT-
EMNLP, pages 81–88, Vancouver, Canada, October.

Robert C. Moore, Wen-tau Yih and Andreas Bode. (2006).
Improved Discriminative Bilingual Word Alignment.
In Proceedings of the 21st International Conference on
Computational Linguistics and 44th Annual Meeting of
the ACL, pages 513–520, Sydney, July 2006.

Franz Joseph Och and Herman Ney. (2003). A Systematic
Comparison of Various Statistical Alignment Models.
Computational Linguistics, 29(1):19–52, March.

B. Taskar, S. Lacoste-Julien, and D. Klein. (2005). A
discriminative matching approach to word alignment.
In Proceedings of HLT-EMNLP, pages 73–80,
Vancouver, Canada.

Stephan Vogel, Hermann Ney, and Christoph Tillmann.
(1996). HMM-based word alignment in statistical
translation. In Proceedings of the COLING’96, pp.
836–841.

Dekai Wu. (1997). Stochastic Inversion Transduction
Grammars and Bilingual Parsing of Parallel Corpora.
Computational Linguistics, 23(3):374.

K. Yamada and K. Knight. (2001). A syntax-based
statistical translation model. In Meeting of the
Association for Computational Linguistics, pages 523–
530.

R. Zens, H. Ney, T. Watanabe, and E. Sumita.(2004),
Reordering constraints for phrase-based statistical
machine translation. In COLING’04: The 20th Int.
Conf. on Computational Linguistics, pp. 205–211

Huaping Zhang, HongKui Yu, Deyi Xiong, and Qun Liu.
(2003). HHMM-based Chinese lexical analyzer
ICTCLAS. In proceedings of the second SigHan
Workshop affiliated with 41th ACL, pp.184-187.

Bing Zhao and Stephan Vogel. (2003). Word Alignment
Based on Bilingual Bracketing. In HLT-NAACL 2003
Workshop: Building and Using Parallel Texts Data
Driven Machine Translation and Beyond, pp. 15-18.

