
Non-hybrid Example-based 
Machine Translation Architectures 

Daniel Jones 

Centre for Computational Linguistics 
UMIST 

Manchester 
UK 

danny@ccl.umist.ac.uk 

Abstract 
A general definition of rationalist and empiricist natural language processing is 

attempted. A classification of empiricist machine translation systems is given based 
on the rationalist/empiricist distinction. Examples of approaches falling into the two 
different strategies are discussed. Research results are reported from attempts to 
break new ground in what is referred to as "pure" or non-hybrid example-based 
machine translation. 
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1. Introduction 

There has, in recent years, been an increase in the amount of interest shown (at least in the 
field of Machine Translation) in what has been called example- or memory-based translation. 
Advocates of this new approach say that this is because of the advantages that analogy-based 
processing offers e.g. robustness, ease of augmentation, accuracy, etc. 
Although it is possible to get an intuitive feel for what example-based approaches entail, a 
more accurate picture of the fundamental issues involved can be gained by contrasting the two 
approaches to language processing by introducing the concepts of rationalism and empiricism. 
The following quotation from Connolly [4] introduces some important concepts in understanding 
the critical differences between what can be referred to as rule-based and example-based 
language processing. 

When linguists describe languages, they naturally employ the technical apparatus of 
descriptive linguistics .. .they attempt to capture structural and functional regularities 
in the language they are investigating ... analysing data so as to reveal the regularities 
displayed therein .. .and setting the results down in the form of explicit 
statements 
.. These .. .data may be generated by linguists themselves .. .and/or the data may 
be obtained from other informants, [p. 222] 

Connolly describes this process as externalising the internal linguistic competence of language 
users and also observes the following characteristics of this pursuit summarised briefly below: 

• The externalised knowledge is incomplete. 

• The externalised and internalised knowledge are not isomorphic i.e.    the methods of 
representation of the two are different. Not only is internalised knowledge stored differently 
- it would appear from psycholinguistic experiments that there is a certain amount of 
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redundancy in the way the brain stores linguistic information -- it is assumed that the highly 
technical frameworks which contemporary linguists employ are not used in the human brain 
itself. 

• Externalised knowledge is open to inspection, in contrast to internalized knowledge. 

It is also noted that: 

The internalised competence is knowledge of a language, whereas the explicit, 
externalised description represents knowledge about a language. In other words, the 
externalised description is a direct embodiment not of linguistic knowledge as such, 
but of metalinguistic knowledge. [ibid]. 

If we assume that the same principles of externalisation apply to computational linguistics, then 
we have a definition of a rationalist approach to language processing i.e. the goal of the 
computational linguist is to discover the internalised knowledge of language users, and represent 
it in a formal metalinguistic manner1 with the aim of making the representation computationally 
tractable. Examples of these representations would be grammars written employing, for example, 
Government Binding Theory[3], Lexical Functional Grammar[1], Generalized Phrase Structure 
Grammar[6], etc. 
A definition for empiricist approaches is also implicitly introduced by Connolly. If the method 
of storing and representing linguistic knowledge is non-isomorphic with respect to rationalist 
metalinguists, then, perhaps, an empiricist approach would attempt to eradicate or at least reduce 
this asymmetry. The empiricist view of language might then be encapsulated by a viewpoint which 
states that the externalisation process is at best unnecessary and, at worst, wrong. As language 
in its written and spoken forms contains all the information necessary for language users (human 
beings) to analyse, generate, and translate, the job of the empiricist is merely to describe what 
is there. In other words, the major difference between a rational and empiricist approach is the 
latter does not attempt to create a metalinguistics. 

2. Rule-based versus Example-based Processing 

The above definition of empiricist methodology is a rather extreme one. The suggestion that 
empirical (computational) linguists deny the need for a metalinguistic framework leads to some 
interesting questions e.g. Where are the rules2 which allow the processing to occur? How do we 
know how to manipulate the linguistic knowledge we have analysed and described? 
The central concern here is the use of rules and it is this feature which characterises the two 
fundamentally different approaches to the processing of natural language. Rationalism's use of 
metalinguistics is typically realised by the use of rules to predict and determine how language 
can and should be analysed and generated.3 In contrast, empiricist (or what can also be called 
example/memory-based) approaches do not seek to use rules as a necessary feature of the 
linguistic knowledge of the system. 

3. Types of Empirical Natural Language Processing 

Example-based systems do not reject rules out-of-hand. Indeed rules are frequently employed 
to some degree or other in systems which can be classified as example-based. However, the 
important point is that they may not be used. The distinction can be clarified with reference to 
existing systems which fall within the example-based paradigm. 

1 The formal methodology for this process is, of course, heavily influenced by the seminal work of Chomsky. 
2 Where "rule" is used as a general pattern-and-associated-action configuration. The predictive and explanatory 

capacity of such formulations provide much of the underpinning generality of many contemporary natural language 
processing systems. 

3 The fact that these rules may have been derived by corpus analysis is irrelevant because the fact remains that the 
rules themselves (regardless of their origin) are the main embodiment of both linguistic and executive knowledge. 
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3.1 Hybrid Example-based Systems 

A hybrid example-based system is one where some element or module of the overall architecture 
employs non-rule-based processing. Sumita et al.[l4] describe the use of a module to translate 
noun/preposition/noun constructs from Japanese into English. They state that although construct- 
ing a rule or rules to do this task would appear to be straightforward, in reality, the task is quite 
difficult for a rule-based approach. Consequently, they suggest the use of an example-based 
method 4 to execute this sub-task as its performance is clearly superior to the deployment of 
"conventional" transfer rules. Sumita et al.'s belief is that: 

... it is not yet clear whether EBMT [Example-Based Machine Translation] can/should 
deal with the whole process of translation. We assume that there are many kinds 
of phenomena; some are suitable for EBMT and others are not. Thus, it is more 
acceptable for users if RBMT [Rule-Based Machine Translation] is first introduced 
as a base system which can translate totally, then its translation performance can 
be improved incrementally by attaching EBMT components as soon as suitable 
phenomena for EBMT are recognized. [p. 211] 

This is the clearest form of hybrid system but there are degrees to which rule and example-based 
approaches can be mixed. Sumita et al.'s approach gives more emphasis to rule-based as 
opposed to example-based algorithms whereas Sato & Nagao[12] suggest a reversal of this 
emphasis by suggesting that, for translation purposes at least, example-based processing should, 
in fact, deal with the whole process of translation. They propose a system based on pairs of 
translation equivalents i.e. whole sentences stored as dependency trees. The task of the system 
is to identify which translation units (subtrees) can be used as matching points with the input. The 
concept of a restricted (syntactic) environment5 is used to calculate the most suitable matching 
points across the example data set which is defined as: 

.. .the summation of the similarity values [taken from the thesaurus] between corre- 
sponding nodes in two restricted environments at the best matching. [Sato & Nagao, 
p.250] 

In suggesting that example-based methods can be used autonomously, Sato & Nagao realise 
that there is a need to recombine6 parts of translation examples: 

The ability to combine some fragments of translation examples is essential to example- 
based translation. A lack of this ability restricts the power of example-based translation, 
[ibid., p.247] 

Recombination can be used for monolingual as well as bilingual language processing. Monolingual 
recombination processing will be used purely to gain the highest degree of matching with the 
input, a process which can be regarded as one of cloning. As the aim of the analysis phase is to 
map the required information from the described examples onto the input, the flow of information 
is from the dataset of language examples to the input. If the dataset of examples is regarded 
as not a static set of discrete entities but a permutable and flexible interactive set of process 
modules, we can envisage a control architecture where each process (example) attempts to clone 
itself with respect to (parts of) the input. This cloning process may indeed involve some degree of 
recombination. In a monolingual scenario the result of the cloning process may be some (quasi) 
logical form for database query purposes. In a bilingual environment, instead of a logical form, we 
would generate a translation. 

4 A distance measure is used to determine the best translation candidates derived from a parallel corpus. A thesaurus 
is also used in order to capture lexical similarities if identical matching is not possible. 

5 This consists of nodes in the dependency tree one mother node up from that of the translation unit itself. 
6 The term "recombination" is used as it is assumed that the examples under analysis are already combined in some 

sense. Hence, a process of permutation would, strictly speaking, be re-activating a previously executed process. 
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3.2 Pure Example-based Systems 
In contrast to what have been called hybrid example-based systems, there are approaches which 
can be regarded as coming as close as possible to employing wholly analogical methods. The 
most well-known of these are connectionist models7. 
It is clear why connectionist models should be regarded as pure example-based systems whether 
designed for processing natural language or otherwise. Because the connectionist network is 
trained on a succession of inputs and their corresponding outputs i.e. what the model should 
produce when presented with that input, the model learns by example how to deal with new inputs 
once the training stage has been completed. Hence, the "judgements" such a model makes about 
any input received are solely based on examples the model has seen before. Recent research 
has shown that such models can be used successfully for analysis purposes. McClelland & 
Kawamoto[9] have demonstrated the effectiveness of a model trained to assign case roles to 
sentential constituents and Jain[7] has developed a system which: 

... learns to parse complex sentences presented one word at a time by acquiring a 
statistical grammar based on a combination of semantic and syntactic clues. [p. 111] 
(emphasis original) 

Both active and passive sentences are dealt with as well as centre-embedded constructions. 
Another "pure" approach to processing natural language by example is offered by Skousen's 
"Analogical Modeling"[13]. In a similar fashion to connectionism, Skousen advocates using 
a network of examples. Each example is represented as a set of features which represent 
characteristics of the language segments ranging from phonemic units through to sociolinguistic 
factors of age and social status. Each example has an associated "outcome" which can 
be regarded as the functional effect of applying an example in a particular context e.g. a 
voiced/voiceless distinction with respect to a "phonetic" context. The dataset is constructed from 
a network of the examples (with their outcomes) with pointers from each outcome to every other 
outcome in the dataset. When an input is received, the analogical processing attempts to find 
which examples across the dataset have the greatest analogical effect on the input. These 
examples are assigned a percentage probability of analogical effect so that the results can be 
scored. 
Skousen notes the similarity between connectionism and analogical modelling stating that: 

Both approaches dispense with the need for rules, yet still account for "rule governed" 
behavior. They can both predict behavior when the data is ill-formed or missing crucial 
information. [ibid., p. 81] 

However, it is clear that an analogical model does not go through a competitive learning procedure 
and it has more of the feel of a conventional linguistic database from which appropriate examples 
can be directly extracted. 
The reason both connectionism and analogical modelling can be thought of as embodying pure 
example-based architectures is not that they deny the use of rules during processing (any 
algorithm has to be expressed in terms of rules). Rather, it is the assumptions of where the 
knowledge comes from to make a descriptive judgement about a given piece of natural language. 
This difference can be stated informally as follows: 

1. Rule-based maxim: Language behaviour can be described by a set of discrete metalinguistic 
rules. Language can therefore be processed directly by the compositional application of 
these discrete rules. 

2. Example-based maxim: Language behaviour can be described by a set of appropriately 
represented examples of language which compete together as a whole to "passively" imbue 
their associated descriptions onto some language fragment. 

Although research in connectionism and analogical modelling has not, until very recently, been 
carried out in the field of machine translation, research carried out by Brown et al.[2] has 

7Also referred to as Parallel Distributed Processing (PDP) or Neural Networks. 
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demonstrated how effective parallel examples of text can be in translating between two languages. 
By aligning sentences of a bilingual corpus it is possible to predict which elements of a source 
text input are most likely to be translates of the target language: 

We assign to every pair of sentences (S,T) a probability, Pr(T|S), to be interpreted as 
the probability that a translator will produce T in the target language when presented 
with S in the source language. We expect Pr(T|S) to be very small for pairs like (Le 
matin je me brosse les dents | President Lincoln was a good lawyer) and relatively 
large for pairs like (Le president Lincoln était un bon avocat |\ President Lincoln was a 
good lawyer). [ibid., p. 79] 

4. Pure Example-Based Machine Translation 

It is interesting to note that systems which I have classified as hybrid have been designed with the 
aim of translating between languages whereas the pure approaches (apart from Brown's work) 
have been restricted to monolingual processing tasks. 
There is a suspicion that the performance of a purely statistically-based translation system would 
improve with the inclusion of linguistic descriptions or more generally abstract information about 
linguistic function. As the other purely stochastic techniques, i.e. connectionism and analogical 
modelling, rely on descriptive detail as a fundamental requirement, it would be interesting to see 
how these techniques perform with respect to the task of translation. 

 

4.1 Rule-less Analysis 

Experiments with the analysis phase of the translation task have been attempted without 
conventional rule-based parsing algorithms by the author [8]. Analogical Modelling was used to 
provide an example-based machine translation system with a means to measure the probabilistic 
distance between an input text and the set of translation examples. 
A cascaded analysis architecture was used to successively pass along the results of different 
levels of analysis until a sufficiently detailed amount of information had been obtained for the 
"transfer" stage. The overall concept of the system is similar in nature to that proposed by 
Nagao[10], (and later Sumita & Nagao[12]) as well as Sadler[11], but the emphasis here is on 
non-rule-based analysis. Previous research has tended to assume some parsing process would 
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be used which may well have been rule-based. The aim in these experiments was to attempt to 
be as strictly example-based as possible. 
There are two stages through which the input (in this case a sentence) must pass -- the lexical 
category assignment stage and the clause identification stage. See Figure 1. 
The examples for the lexical category assignment task were derived from a small number of 
business letter texts by the following means. Sets of three consecutive words at a time were 
taken from the corpus. Each triplet can be represented as (W1, T, W2). The last three letters from 
W1, the last four letters from T, and the first three letters from W2 were taken to form a vector of 
ten characters. The outcome for this vector was the actual lexical category of T in its context of 
occurrence giving the following representation8: 

 
If any of W1, T, or W2 had too few characters, the missing characters were signalled by a null 
character in the example vector. The lexical categories used to describe both the outcomes of the 
lexical category predictions and the representation of word group vectors are given below (see 
Tables 1-4): 

 

The lexical category data was constructed semi-automatically. Plain ascii text files were auto- 
matically segmented into the word triples. As the outcomes of these particular example vectors 
were lexical categories, i.e. information not already available in the non-tagged corpus, in order 
to maintain accuracy of labeling they were entered by hand (although this process, too, could be 
automated with an automatic tagger). However, as the number of examples in the experiment was 
small (around 250), the overhead of semi-automatic construction was thought to be acceptable. 
The examples had, at some point, to be encoded in 'C' but this was achieved by a compiler 
compiler thereby divorcing the database creator from low-level implementation issues. In contrast 
to the creation of lexical examples, word group vectors were constructed manually. Texts were 
manually segmented and labeled for appropriate outcomes. This was the most time-consuming 
part of example creation. 
Even though the scale of the experiments was small, the results were surprisingly good. In most 
cases, the correct lexical assignments were made to the words in input sentences. Also of interest 
was the fact that correct "guesses" were made about words which the analogical model did not 
have as direct examples in its dataset.9 
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Interestingly, The system proposes (guesses) that the lexical item "widgets" is a plural, non- 
human, count noun (N+p+nh+c) even though this word is unknown to the system. The ability of 
the system to do this is derived from the comparison of subparts of all examples along with their 
outcomes which weight global probability for a particular outcome. In the case of "widgets", the 
best guess of the system was based on a number of examples of nouns ending in "-ts" plus the 
relatively large proportion of nouns present in the database. While this feature of the system gives 
rise to robustness in that probability of assignment will always be given, if the database is not 
represented properly the system will become too unconstrained in its predictive ability. 
Once these assignments had been made to the words in the input string, the newly classified 
lexical items were passed through to the clause-level network. The same principle of example 
preparation was used here as with the lexical processing. Phrasal groupings from the sentences 
of the business letter data were taken, and a corresponding vector was generated consisting of 
a fixed number of variables signalling the presence or absence of the particular lexical category, 
e.g. noun, adjective, adverb, etc. The outcome of the vector was the case role of the word group 
i.e. 

 
The input was segmented by the use of a simple heuristic in order to associate word groupings 
with a level of sentential description based on Functional Grammar (see Dik[5]) predicate frame 
structures10. Word group boundaries were said to occur where the analogical effect for a particular 
case role or phrasal outcome fell after the inclusion of a lexical item. As words from the input 
sentence are added to the word group input vector, one particular outcome may prevail but then 
fail to do so at a given point. 

10 The use of a linguistic formalism for descriptive purposes does not make an example-based system hybrid. It is how 
the descriptions are used that is crucial in this respect. 
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This cascaded process was demonstrated with a different dataset derived from a small sample 
of travel messages. For example, the phrase "No problems reported" will be analysed in three 
stages i.e. "No", "No problems", and "No problems reported" once the probabilistic lexical 
assignments have been made 11. See Tables 6 and 7 below. 

 

The third column of tables 6 and 7 shows the origin of the data on which the probable matches 
are predicted. In table 6, these are lexical items, and in table 7, predicate frames. The names 
given in table 7 are the predicate names which govern the example word groupings. 
The experiment shows the probability for the outcome NP rising until "reported" is encountered 
giving the structure [[No problems] reported] to the input. 
The example predicate frame is chosen based on the lexical item predicted to be the main 
verb of the input sentence by the lexical category prediction phase i.e. "reported" (see table 
6). If the predictions of the analogical matching between proposed word groups and current 
example predicate frame are the same for all frame slots then that example predicate frame 
(source language part) would have a high analogical effect on the input sentence. The most likely 
predicate frame associated with the word grouping "No problems" is "require" which corresponds 
with the proposed lexical category prediction for the main verb. There is an exact correspondence 
between the two levels of processing and the relevant examples can be said to have cloned well 
with respect to the input. 

5. Summary 

The main distinction between rationalist and empiricist approaches to machine translation (and 
natural language processing in general) is that rationalists attempt to build a metalinguistic 
model which is supposed to capture and predict (as elegantly as possible) all possible "legal" 
expressions in a given language. The empiricist assumption is that the construction of a suitable 
executive mechanism plus the appropriate description of real (as opposed to invented) language 
data is a better way of approaching the complex issues surrounding human language. 
A distinction, based on this premise, has been discussed which differentiates between two types 
of empiricist (or example-based) MT systems i.e., hybrid and pure. Hybrid systems employ a 

11 The lexical category assignments shown in Table 6 were achieved with different data than that shown in Table 5. 
Rather than a (W1, T, W2) configuration, isolated words were used with only the first N letters retained. The experiment 
shown in Table 6 had N equal to 4. 
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mixture of rationalist (or rule-based) assumptions, representations, and algorithms along with 
example-based modules. Pure systems reject any rule-based processing. 
It is noted that those approaches which can be characterised as pure have not been used 
for translation purposes. Consequently, research experiments have been reported which have 
explored the use of one of these approaches (analogical modelling) in the analysis phase of a 
transfer-based MT architecture. 
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