Zhi Yuan Lim


2021

pdf
IndoNLG: Benchmark and Resources for Evaluating Indonesian Natural Language Generation
Samuel Cahyawijaya | Genta Indra Winata | Bryan Wilie | Karissa Vincentio | Xiaohong Li | Adhiguna Kuncoro | Sebastian Ruder | Zhi Yuan Lim | Syafri Bahar | Masayu Khodra | Ayu Purwarianti | Pascale Fung
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Natural language generation (NLG) benchmarks provide an important avenue to measure progress and develop better NLG systems. Unfortunately, the lack of publicly available NLG benchmarks for low-resource languages poses a challenging barrier for building NLG systems that work well for languages with limited amounts of data. Here we introduce IndoNLG, the first benchmark to measure natural language generation (NLG) progress in three low-resource—yet widely spoken—languages of Indonesia: Indonesian, Javanese, and Sundanese. Altogether, these languages are spoken by more than 100 million native speakers, and hence constitute an important use case of NLG systems today. Concretely, IndoNLG covers six tasks: summarization, question answering, chit-chat, and three different pairs of machine translation (MT) tasks. We collate a clean pretraining corpus of Indonesian, Sundanese, and Javanese datasets, Indo4B-Plus, which is used to pretrain our models: IndoBART and IndoGPT. We show that IndoBART and IndoGPT achieve competitive performance on all tasks—despite using only one-fifth the parameters of a larger multilingual model, mBART-large (Liu et al., 2020). This finding emphasizes the importance of pretraining on closely related, localized languages to achieve more efficient learning and faster inference at very low-resource languages like Javanese and Sundanese.

2020

pdf
IndoNLU: Benchmark and Resources for Evaluating Indonesian Natural Language Understanding
Bryan Wilie | Karissa Vincentio | Genta Indra Winata | Samuel Cahyawijaya | Xiaohong Li | Zhi Yuan Lim | Sidik Soleman | Rahmad Mahendra | Pascale Fung | Syafri Bahar | Ayu Purwarianti
Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th International Joint Conference on Natural Language Processing

Although Indonesian is known to be the fourth most frequently used language over the internet, the research progress on this language in natural language processing (NLP) is slow-moving due to a lack of available resources. In response, we introduce the first-ever vast resource for training, evaluation, and benchmarking on Indonesian natural language understanding (IndoNLU) tasks. IndoNLU includes twelve tasks, ranging from single sentence classification to pair-sentences sequence labeling with different levels of complexity. The datasets for the tasks lie in different domains and styles to ensure task diversity. We also provide a set of Indonesian pre-trained models (IndoBERT) trained from a large and clean Indonesian dataset (Indo4B) collected from publicly available sources such as social media texts, blogs, news, and websites. We release baseline models for all twelve tasks, as well as the framework for benchmark evaluation, thus enabling everyone to benchmark their system performances.