Zhengwei Tao


2024

pdf
Integrating Physician Diagnostic Logic into Large Language Models: Preference Learning from Process Feedback
Chengfeng Dou | Ying Zhang | Zhi Jin | Wenpin Jiao | Haiyan Zhao | Yongqiang Zhao | Zhengwei Tao
Findings of the Association for Computational Linguistics: ACL 2024

The utilization of large language models for medical dialogue generation has attracted considerable attention due to its potential to enhance response richness and coherence. While previous studies have made strides in optimizing model performance, there is a pressing need to bolster the model’s capacity for diagnostic logic to ensure patient safety. In response to this need, we propose an approach termed preference learning from process feedback (PLPF), which involves integrating the doctor’s diagnostic logic into LLMs. PLPF encompasses three key components: rule modeling, preference data generation, and preference alignment. These components collectively serve to train the model to adhere to the diagnostic process. Our experimental results, utilizing Standardized Patient Testing, demonstrate that PLPF enhances the diagnostic accuracy of the baseline model in medical conversations by 17.6%, surpassing the performance of traditional approaches. Moreover, PLPF exhibits effectiveness in both multi-round and single-round dialogue tasks, thereby highlighting its potential in improving medical dialogue generation. Our dataset is available at https://github.com/Chengfeng-Dou/SpTesting.

pdf
ODA: Observation-Driven Agent for integrating LLMs and Knowledge Graphs
Lei Sun | Zhengwei Tao | Youdi Li | Hiroshi Arakawa
Findings of the Association for Computational Linguistics: ACL 2024

The integration of Large Language Models (LLMs) and knowledge graphs (KGs) has achieved remarkable success in various natural language processing tasks. However, existing methodologies that integrate LLMs and KGs often navigate the task-solving process solely based on the LLM’s analysis of the question, overlooking the rich cognitive potential inherent in the vast knowledge encapsulated in KGs. To address this, we introduce Observation-Driven Agent (ODA), a novel AI agent framework tailored for tasks involving KGs. ODA incorporates KG reasoning abilities via global observation, which enhances reasoning capabilities through a cyclical paradigm of observation, action, and reflection. Confronting the exponential explosion of knowledge during observation, we innovatively design a recursive observation mechanism. Subsequently, we integrate the observed knowledge into the action and reflection modules. Through extensive experiments, ODA demonstrates state-of-the-art performance on several datasets, notably achieving accuracy improvements of 12.87% and 8.9%.

pdf
MEEL: Multi-Modal Event Evolution Learning
Zhengwei Tao | Zhi Jin | Junqiang Huang | Xiancai Chen | Xiaoying Bai | Yifan Zhang | Chongyang Tao
Findings of the Association for Computational Linguistics: ACL 2024

Multi-modal Event Reasoning (MMER) endeavors to endow machines with the ability to comprehend intricate event relations across diverse data modalities. MMER is fundamental and underlies a wide broad of applications. Despite extensive instruction fine-tuning, current multi-modal large language models still fall short in such ability. The disparity stems from that existing models are insufficient to capture underlying principles governing event evolution in various scenarios. In this paper, we introduce Multi-Modal Event Evolution Learning (MEEL) to enable the model to grasp the event evolution mechanism yielding advanced MMER ability. Specifically, we commence with the design of event diversification to gather seed events from a rich spectrum of scenarios. Subsequently, we employ ChatGPT to generate evolving graphs for these seed events. We propose an instruction encapsulation process that formulates the evolving graphs into instruction-tuning data, aligning the comprehension of event reasoning to humans. Finally, we observe that models trained in this way are still struggling to fully comprehend event evolution. In such a case, we propose the guiding discrimination strategy, in which models are trained to discriminate the improper evolution direction. We collect and curate a benchmark M-EV2 for MMER. Extensive experiments on M-EV2 validate the effectiveness of our approach, showcasing competitive performance in open-source multi-modal LLMs.

pdf
EVIT: Event-Oriented Instruction Tuning for Event Reasoning
Zhengwei Tao | Xiancai Chen | Zhi Jin | Xiaoying Bai | Haiyan Zhao | Yiwei Lou
Findings of the Association for Computational Linguistics: ACL 2024

Events refer to specific occurrences, incidents, or happenings that take place under a particular background. Event reasoning aims to infer events according to certain relations and predict future events. The cutting-edge techniques for event reasoning play a crucial role in various natural language processing applications. Large language models (LLMs) have made significant advancements in event reasoning owing to their wealth of knowledge and reasoning capabilities. However, smaller instruction-tuned models currently in use do not consistently demonstrate exceptional proficiency in managing these tasks. This discrepancy arises from the absence of explicit modeling of events and the interconnections of them within their instruction data. Consequently, these models face challenges in comprehending event structures and semantics while struggling to bridge the gap between their interpretations and human understanding of events. Additionally, their limitations in grasping event relations lead to constrained event reasoning abilities to effectively deduce and incorporate pertinent event knowledge. In this paper, we propose Event-Oriented Instruction Tuning to train our large language model named EvIT specializing in event reasoning tasks. Specifically, we first propose a novel structure named event quadruple which contains the structure and semantics of events and is complete in the event representation. We then design event-relation learning based on the structures. We encapsulate the learning into the instruction-tuning formulation to better stimulate the event reasoning capacity of our model. To implement our training, we design a heuristic unsupervised method to mine event quadruple from a large-scale corpus. At last, we finetune a Llama model on our Event-Oriented Instruction Tuning. We conduct extensive experiments on event reasoning tasks on several datasets. Automatic and human evaluations demonstrate EvIT achieves competitive performances on event reasoning.

2023

pdf
UniEvent: Unified Generative Model with Multi-Dimensional Prefix for Zero-Shot Event-Relational Reasoning
Zhengwei Tao | Zhi Jin | Haiyan Zhao | Chengfeng Dou | Yongqiang Zhao | Tao Shen | Chongyang Tao
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Reasoning about events and their relations attracts surging research efforts since it is regarded as an indispensable ability to fulfill various event-centric or common-sense reasoning tasks. However, these tasks often suffer from limited data availability due to the labor-intensive nature of their annotations. Consequently, recent studies have explored knowledge transfer approaches within a multi-task learning framework to address this challenge. Although such methods have achieved acceptable results, such brute-force solutions struggle to effectively transfer event-relational knowledge due to the vast array of inter-event relations (e.g. temporal, causal, conditional) and reasoning formulations (e.g. discriminative, abductive, ending prediction). To enhance knowledge transfer and enable zero-shot generalization among various combinations, in this work we propose a novel unified framework, called UNIEVENT. Inspired by prefix-based multitask learning, our approach organizes event relational reasoning tasks into a coordinate system with multiple axes, representing inter-event relations and reasoning formulations. We then train a unified text-to-text generative model that utilizes coordinate-assigning prefixes for each task. By leveraging our adapted prefixes, our unified model achieves state-of-the-art or competitive performance on both zero-shot and supervised reasoning tasks, as demonstrated in extensive experiments

pdf
SEAG: Structure-Aware Event Causality Generation
Zhengwei Tao | Zhi Jin | Xiaoying Bai | Haiyan Zhao | Chengfeng Dou | Yongqiang Zhao | Fang Wang | Chongyang Tao
Findings of the Association for Computational Linguistics: ACL 2023

Extracting event causality underlies a broad spectrum of natural language processing applications. Cutting-edge methods break this task into Event Detection and Event Causality Identification. Although the pipelined solutions succeed in achieving acceptable results, the inherent nature of separating the task incurs limitations. On the one hand, it suffers from the lack of cross-task dependencies and may cause error propagation. On the other hand, it predicts events and relations separately, undermining the integrity of the event causality graph (ECG). To address such issues, in this paper, we propose an approach for Structure-Aware Event Causality Generation (SEAG). With a graph linearization module, we generate the ECG structure in a way of text2text generation based on a pre-trained language model. To foster the structural representation of the ECG, we introduce the novel Causality Structural Discrimination training paradigm in which we perform structural discriminative training alongside auto-regressive generation enabling the model to distinguish from constructed incorrect ECGs. We conduct experiments on three datasets. The experimental results demonstrate the effectiveness of structural event causality generation and the causality structural discrimination training.

pdf
PlugMed: Improving Specificity in Patient-Centered Medical Dialogue Generation using In-Context Learning
Chengfeng Dou | Zhi Jin | Wenpin Jiao | Haiyan Zhao | Yongqiang Zhao | Zhengwei Tao
Findings of the Association for Computational Linguistics: EMNLP 2023

The patient-centered medical dialogue systems strive to offer diagnostic interpretation services to users who are less knowledgeable about medical knowledge, through emphasizing the importance of providing responses specific to the patients. It is difficult for the large language models (LLMs) to guarantee the specificity of responses in spite of its promising performance even in some tasks in medical field. Inspired by in-context learning, we propose PlugMed, a Plug-and-Play Medical Dialogue System, for addressing this challenge. PlugMed is equipped with two modules, the prompt generation (PG) module and the response ranking (RR) module, to enhances LLMs’ dialogue strategies for improving the specificity of the dialogue. The PG module is designed to stimulate the imitative ability of LLMs by providing them with real dialogues from similar patients as prompts. The RR module incorporates fine-tuned small model as response filter to enable the selection of appropriate responses generated by LLMs. Furthermore, we introduce a new evaluation method based on matching both user’s intent and high-frequency medical term to effectively assess the specificity of the responses. We conduct experimental evaluations on three medical dialogue datasets, and the results, including both automatic and human evaluation, demonstrate the effectiveness of our approach.