Zhankui He


2024

pdf
Evaluating Large Language Models as Generative User Simulators for Conversational Recommendation
Se-eun Yoon | Zhankui He | Jessica Echterhoff | Julian McAuley
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Synthetic users are cost-effective proxies for real users in the evaluation of conversational recommender systems. Large language models show promise in simulating human-like behavior, raising the question of their ability to represent a diverse population of users. We introduce a new protocol to measure the degree to which language models can accurately emulate human behavior in conversational recommendation. This protocol is comprised of five tasks, each designed to evaluate a key property that a synthetic user should exhibit: choosing which items to talk about, expressing binary preferences, expressing open-ended preferences, requesting recommendations, and giving feedback. Through evaluation of baseline simulators, we demonstrate these tasks effectively reveal deviations of language models from human behavior, and offer insights on how to reduce the deviations with model selection and prompting strategies.

pdf
Aligning as Debiasing: Causality-Aware Alignment via Reinforcement Learning with Interventional Feedback
Yu Xia | Tong Yu | Zhankui He | Handong Zhao | Julian McAuley | Shuai Li
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Large language models (LLMs) often generate biased outputs containing offensive, toxic, or stereotypical text. Existing LLM alignment methods such as reinforcement learning from human feedback (RLHF) alleviate biases primarily based on reward signals from current model outputs without considering the source of biases. In this work, to explore how biases are formed, we revisit LLMs’ text generation from a causal perspective. We identify pretraining data and input prompts, which contain semantic correlations of textual phrases, as two confounders between LLMs and model outputs causing biases. Inspired by our causal view, we leverage the reward model in RL alignment as an instrumental variable to perform causal intervention on LLMs. Utilizing the reward difference between an initial LLM and intervened LLM as interventional feedback to guide RL finetuning, we propose Causality-Aware Alignment (CAA) for LLM debiasing. Experiments on two text generation tasks with three different alignment objectives demonstrate the advantages of our method in aligning LLMs to generate less biased and safer outputs.