Yuhao Lin


2024

pdf
Semantic Role Labeling Guided Out-of-distribution Detection
Jinan Zou | Maihao Guo | Yu Tian | Yuhao Lin | Haiyao Cao | Lingqiao Liu | Ehsan Abbasnejad | Javen Qinfeng Shi
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Identifying unexpected domain-shifted instances in natural language processing is crucial in real-world applications. Previous works identify the out-of-distribution (OOD) instance by leveraging a single global feature embedding to represent the sentence, which cannot characterize subtle OOD patterns well. Another major challenge current OOD methods face is learning effective low-dimensional sentence representations to identify the hard OOD instances that are semantically similar to the in-distribution (ID) data. In this paper, we propose a new unsupervised OOD detection method, namely Semantic Role Labeling Guided Out-of-distribution Detection (SRLOOD), that separates, extracts, and learns the semantic role labeling (SRL) guided fine-grained local feature representations from different arguments of a sentence and the global feature representations of the full sentence using a margin-based contrastive loss. A novel self-supervised approach is also introduced to enhance such global-local feature learning by predicting the SRL extracted role. The resulting model achieves SOTA performance on four OOD benchmarks, indicating the effectiveness of our approach. The code is publicly accessible via https://github.com/cytai/SRLOOD.

2022

pdf
Astock: A New Dataset and Automated Stock Trading based on Stock-specific News Analyzing Model
Jinan Zou | Haiyao Cao | Lingqiao Liu | Yuhao Lin | Ehsan Abbasnejad | Javen Qinfeng Shi
Proceedings of the Fourth Workshop on Financial Technology and Natural Language Processing (FinNLP)

Natural Language Processing (NLP) demonstrates a great potential to support financial decision-making by analyzing the text from social media or news outlets. In this work, we build a platform to study the NLP-aided stock auto-trading algorithms systematically. In contrast to the previous work, our platform is characterized by three features: (1) We provide financial news for each specific stock. (2) We provide various stock factors for each stock. (3) We evaluate performance from more financial-relevant metrics. Such a design allows us to develop and evaluate NLP-aided stock auto-trading algorithms in a more realistic setting. In addition to designing an evaluation platform and dataset collection, we also made a technical contribution by proposing a system to automatically learn a good feature representation from various input information. The key to our algorithm is a method called semantic role labeling Pooling (SRLP), which leverages Semantic Role Labeling (SRL) to create a compact representation of each news paragraph. Based on SRLP, we further incorporate other stock factors to make the final prediction. In addition, we propose a self-supervised learning strategy based on SRLP to enhance the out-of-distribution generalization performance of our system. Through our experimental study, we show that the proposed method achieves better performance and outperforms all the baselines’ annualized rate of return as well as the maximum drawdown of the CSI300 index and XIN9 index on real trading. Our Astock dataset and code are available at https://github.com/JinanZou/Astock.

2021

pdf
Don’t Miss the Labels: Label-semantic Augmented Meta-Learner for Few-Shot Text Classification
Qiaoyang Luo | Lingqiao Liu | Yuhao Lin | Wei Zhang
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021