Yu Tian


2024

pdf
Semantic Role Labeling Guided Out-of-distribution Detection
Jinan Zou | Maihao Guo | Yu Tian | Yuhao Lin | Haiyao Cao | Lingqiao Liu | Ehsan Abbasnejad | Javen Qinfeng Shi
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Identifying unexpected domain-shifted instances in natural language processing is crucial in real-world applications. Previous works identify the out-of-distribution (OOD) instance by leveraging a single global feature embedding to represent the sentence, which cannot characterize subtle OOD patterns well. Another major challenge current OOD methods face is learning effective low-dimensional sentence representations to identify the hard OOD instances that are semantically similar to the in-distribution (ID) data. In this paper, we propose a new unsupervised OOD detection method, namely Semantic Role Labeling Guided Out-of-distribution Detection (SRLOOD), that separates, extracts, and learns the semantic role labeling (SRL) guided fine-grained local feature representations from different arguments of a sentence and the global feature representations of the full sentence using a margin-based contrastive loss. A novel self-supervised approach is also introduced to enhance such global-local feature learning by predicting the SRL extracted role. The resulting model achieves SOTA performance on four OOD benchmarks, indicating the effectiveness of our approach. The code is publicly accessible via https://github.com/cytai/SRLOOD.

2022

pdf
Coarse-to-Fine: Hierarchical Multi-task Learning for Natural Language Understanding
Zhaoye Fei | Yu Tian | Yongkang Wu | Xinyu Zhang | Yutao Zhu | Zheng Liu | Jiawen Wu | Dejiang Kong | Ruofei Lai | Zhao Cao | Zhicheng Dou | Xipeng Qiu
Proceedings of the 29th International Conference on Computational Linguistics

Generalized text representations are the foundation of many natural language understanding tasks. To fully utilize the different corpus, it is inevitable that models need to understand the relevance among them. However, many methods ignore the relevance and adopt a single-channel model (a coarse paradigm) directly for all tasks, which lacks enough rationality and interpretation. In addition, some existing works learn downstream tasks by stitches skill block (a fine paradigm), which might cause irrational results due to its redundancy and noise. In this work, we first analyze the task correlation through three different perspectives, , data property, manual design, and model-based relevance, based on which the similar tasks are grouped together. Then, we propose a hierarchical framework with a coarse-to-fine paradigm, with the bottom level shared to all the tasks, the mid-level divided to different groups, and the top-level assigned to each of the tasks. This allows our model to learn basic language properties from all tasks, boost performance on relevant tasks, and reduce the negative impact from irrelevant tasks. Our experiments on 13 benchmark datasets across five natural language understanding tasks demonstrate the superiority of our method.

2020

pdf
Continual Learning Long Short Term Memory
Xin Guo | Yu Tian | Qinghan Xue | Panos Lampropoulos | Steven Eliuk | Kenneth Barner | Xiaolong Wang
Findings of the Association for Computational Linguistics: EMNLP 2020

Catastrophic forgetting in neural networks indicates the performance decreasing of deep learning models on previous tasks while learning new tasks. To address this problem, we propose a novel Continual Learning Long Short Term Memory (CL-LSTM) cell in Recurrent Neural Network (RNN) in this paper. CL-LSTM considers not only the state of each individual task’s output gates but also the correlation of the states between tasks, so that the deep learning models can incrementally learn new tasks without catastrophically forgetting previously tasks. Experimental results demonstrate significant improvements of CL-LSTM over state-of-the-art approaches on spoken language understanding (SLU) tasks.