This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we generate only three BibTeX files per volume, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
Document translation poses a challenge for Neural Machine Translation (NMT) systems. Most document-level NMT systems rely on meticulously curated sentence-level parallel data, assuming flawless extraction of text from documents along with their precise reading order. These systems also tend to disregard additional visual cues such as the document layout, deeming it irrelevant. However, real-world documents often possess intricate text layouts that defy these assumptions. Extracting information from Optical Character Recognition (OCR) or heuristic rules can result in errors, and the layout (e.g., paragraphs, headers) may convey relationships between distant sections of text. This complexity is particularly evident in widely used PDF documents, which represent information visually. This paper addresses this gap by introducing M3T a novel benchmark dataset tailored to evaluate NMT systems on the comprehensive task of translating semi-structured documents. This dataset aims to bridge the evaluation gap in document-level NMT systems, acknowledging the challenges posed by rich text layouts in real-world applications.
This paper reports on the shared tasks organized by the 21st IWSLT Conference. The shared tasks address 7 scientific challenges in spoken language translation: simultaneous and offline translation, automatic subtitling and dubbing, speech-to-speech translation, dialect and low-resource speech translation, and Indic languages. The shared tasks attracted 17 teams whose submissions are documented in 27 system papers. The growing interest towards spoken language translation is also witnessed by the constantly increasing number of shared task organizers and contributors to the overview paper, almost evenly distributed across industry and academia.
Attribute-controlled translation (ACT) is a subtask of machine translation that involves controlling stylistic or linguistic attributes (like formality and gender) of translation outputs. While ACT has garnered attention in recent years due to its usefulness in real-world applications, progress in the task is currently limited by dataset availability, since most prior approaches rely on supervised methods. To address this limitation, we propose Retrieval and Attribute-Marking enhanced Prompting (RAMP), which leverages large multilingual language models to perform ACT in few-shot and zero-shot settings. RAMP improves generation accuracy over the standard prompting approach by (1) incorporating a semantic similarity retrieval component for selecting similar in-context examples, and (2) marking in-context examples with attribute annotations. Our comprehensive experiments show that RAMP is a viable approach in both zero-shot and few-shot settings.
This paper reports on the shared tasks organized by the 20th IWSLT Conference. The shared tasks address 9 scientific challenges in spoken language translation: simultaneous and offline translation, automatic subtitling and dubbing, speech-to-speech translation, multilingual, dialect and low-resource speech translation, and formality control. The shared tasks attracted a total of 38 submissions by 31 teams. The growing interest towards spoken language translation is also witnessed by the constantly increasing number of shared task organizers and contributors to the overview paper, almost evenly distributed across industry and academia.
Conventional speech-to-text translation (ST) systems are trained on single-speaker utterances, and they may not generalize to real-life scenarios where the audio contains conversations by multiple speakers. In this paper, we tackle single-channel multi-speaker conversational ST with an end-to-end and multi-task training model, named Speaker-Turn Aware Conversational Speech Translation, that combines automatic speech recognition, speech translation and speaker turn detection using special tokens in a serialized labeling format. We run experiments on the Fisher-CALLHOME corpus, which we adapted by merging the two single-speaker channels into one multi-speaker channel, thus representing the more realistic and challenging scenario with multi-speaker turns and cross-talk. Experimental results across single- and multi-speaker conditions and against conventional ST systems, show that our model outperforms the reference systems on the multi-speaker condition, while attaining comparable performance on the single-speaker condition. We release scripts for data processing and model training.
As generic machine translation (MT) quality has improved, the need for targeted benchmarks that explore fine-grained aspects of quality has increased. In particular, gender accuracy in translation can have implications in terms of output fluency, translation accuracy, and ethics. In this paper, we introduce MT-GenEval, a benchmark for evaluating gender accuracy in translation from English into eight widely-spoken languages. MT-GenEval complements existing benchmarks by providing realistic, gender-balanced, counterfactual data in eight language pairs where the gender of individuals is unambiguous in the input segment, including multi-sentence segments requiring inter-sentential gender agreement. Our data and code is publicly available under a CC BY SA 3.0 license.
The machine translation (MT) task is typically formulated as that of returning a single translation for an input segment. However, in many cases, multiple different translations are valid and the appropriate translation may depend on the intended target audience, characteristics of the speaker, or even the relationship between speakers. Specific problems arise when dealing with honorifics, particularly translating from English into languages with formality markers. For example, the sentence “Are you sure?” can be translated in German as “Sind Sie sich sicher?” (formal register) or “Bist du dir sicher?” (informal). Using wrong or inconsistent tone may be perceived as inappropriate or jarring for users of certain cultures and demographics. This work addresses the problem of learning to control target language attributes, in this case formality, from a small amount of labeled contrastive data. We introduce an annotated dataset (CoCoA-MT) and an associated evaluation metric for training and evaluating formality-controlled MT models for six diverse target languages. We show that we can train formality-controlled models by fine-tuning on labeled contrastive data, achieving high accuracy (82% in-domain and 73% out-of-domain) while maintaining overall quality.
The evaluation campaign of the 19th International Conference on Spoken Language Translation featured eight shared tasks: (i) Simultaneous speech translation, (ii) Offline speech translation, (iii) Speech to speech translation, (iv) Low-resource speech translation, (v) Multilingual speech translation, (vi) Dialect speech translation, (vii) Formality control for speech translation, (viii) Isometric speech translation. A total of 27 teams participated in at least one of the shared tasks. This paper details, for each shared task, the purpose of the task, the data that were released, the evaluation metrics that were applied, the submissions that were received and the results that were achieved.
Neural Machine Translation (NMT) models are sensitive to small perturbations in the input. Robustness to such perturbations is typically measured using translation quality metrics such as BLEU on the noisy input. This paper proposes additional metrics which measure the relative degradation and changes in translation when small perturbations are added to the input. We focus on a class of models employing subword regularization to address robustness and perform extensive evaluations of these models using the robustness measures proposed. Results show that our proposed metrics reveal a clear trend of improved robustness to perturbations when subword regularization methods are used.
While Iterative Back-Translation and Dual Learning effectively incorporate monolingual training data in neural machine translation, they use different objectives and heuristic gradient approximation strategies, and have not been extensively compared. We introduce a novel dual reconstruction objective that provides a unified view of Iterative Back-Translation and Dual Learning. It motivates a theoretical analysis and controlled empirical study on German-English and Turkish-English tasks, which both suggest that Iterative Back-Translation is more effective than Dual Learning despite its relative simplicity.
We aim to better exploit the limited amounts of parallel text available in low-resource settings by introducing a differentiable reconstruction loss for neural machine translation (NMT). This loss compares original inputs to reconstructed inputs, obtained by back-translating translation hypotheses into the input language. We leverage differentiable sampling and bi-directional NMT to train models end-to-end, without introducing additional parameters. This approach achieves small but consistent BLEU improvements on four language pairs in both translation directions, and outperforms an alternative differentiable reconstruction strategy based on hidden states.
Despite some empirical success at correcting exposure bias in machine translation, scheduled sampling algorithms suffer from a major drawback: they incorrectly assume that words in the reference translations and in sampled sequences are aligned at each time step. Our new differentiable sampling algorithm addresses this issue by optimizing the probability that the reference can be aligned with the sampled output, based on a soft alignment predicted by the model itself. As a result, the output distribution at each time step is evaluated with respect to the whole predicted sequence. Experiments on IWSLT translation tasks show that our approach improves BLEU compared to maximum likelihood and scheduled sampling baselines. In addition, our approach is simpler to train with no need for sampling schedule and yields models that achieve larger improvements with smaller beam sizes.
Recognizing that even correct translations are not always semantically equivalent, we automatically detect meaning divergences in parallel sentence pairs with a deep neural model of bilingual semantic similarity which can be trained for any parallel corpus without any manual annotation. We show that our semantic model detects divergences more accurately than models based on surface features derived from word alignments, and that these divergences matter for neural machine translation.
Generating natural language requires conveying content in an appropriate style. We explore two related tasks on generating text of varying formality: monolingual formality transfer and formality-sensitive machine translation. We propose to solve these tasks jointly using multi-task learning, and show that our models achieve state-of-the-art performance for formality transfer and are able to perform formality-sensitive translation without being explicitly trained on style-annotated translation examples.
Despite impressive progress in high-resource settings, Neural Machine Translation (NMT) still struggles in low-resource and out-of-domain scenarios, often failing to match the quality of phrase-based translation. We propose a novel technique that combines back-translation and multilingual NMT to improve performance in these difficult cases. Our technique trains a single model for both directions of a language pair, allowing us to back-translate source or target monolingual data without requiring an auxiliary model. We then continue training on the augmented parallel data, enabling a cycle of improvement for a single model that can incorporate any source, target, or parallel data to improve both translation directions. As a byproduct, these models can reduce training and deployment costs significantly compared to uni-directional models. Extensive experiments show that our technique outperforms standard back-translation in low-resource scenarios, improves quality on cross-domain tasks, and effectively reduces costs across the board.
Stylistic variations of language, such as formality, carry speakers’ intention beyond literal meaning and should be conveyed adequately in translation. We propose to use lexical formality models to control the formality level of machine translation output. We demonstrate the effectiveness of our approach in empirical evaluations, as measured by automatic metrics and human assessments.
Parallel corpora are often not as parallel as one might assume: non-literal translations and noisy translations abound, even in curated corpora routinely used for training and evaluation. We use a cross-lingual textual entailment system to distinguish sentence pairs that are parallel in meaning from those that are not, and show that filtering out divergent examples from training improves translation quality.
Detecting and analyzing stylistic variation in language is relevant to diverse Natural Language Processing applications. In this work, we investigate whether salient dimensions of style variations are embedded in standard distributional vector spaces of word meaning. We hypothesizes that distances between embeddings of lexical paraphrases can help isolate style from meaning variations and help identify latent style dimensions. We conduct a qualitative analysis of latent style dimensions, and show the effectiveness of identified style subspaces on a lexical formality prediction task.
We describe the University of Maryland machine translation system submitted to the IWSLT 2016 Microsoft Speech Language Translation (MSLT) English-French task. Our main finding is that translating conversation transcripts turned out to not be as challenging as we expected: while translation quality is of course not perfect, a straightforward phrase-based system trained on movie subtitles yields high BLEU scores (high 40s on the development set) and manual analysis of 100 examples showed that 61 of them were correctly translated, and errors were mostly local disfluencies in the remaining examples.