This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we generate only three BibTeX files per volume, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
Taxonomy Expansion, which relies on modeling concepts and concept relations, can be formulated as a set representation learning task. The generalization of set, fuzzy set, incorporates uncertainty and measures the information within a semantic concept, making it suitable for concept modeling. Existing works usually model sets as vectors or geometric objects such as boxes, which are not closed under set operations. In this work, we propose a sound and efficient formulation of set representation learning based on its volume approximation as a fuzzy set. The resulting embedding framework, Fuzzy Set Embedding, satisfies all set operations and compactly approximates the underlying fuzzy set, hence preserving information while being efficient to learn, relying on minimum neural architecture. We empirically demonstrate the power of FUSE on the task of taxonomy expansion, where FUSE achieves remarkable improvements up to 23% compared with existing baselines. Our work marks the first attempt to understand and efficiently compute the embeddings of fuzzy sets.
Image-text matching has been a long-standing problem, which seeks to connect vision and language through semantic understanding. Due to the capability to manage large-scale raw data, unsupervised hashing-based approaches have gained prominence recently. They typically construct a semantic similarity structure using the natural distance, which subsequently guides the optimization of the hashing network. However, the similarity structure could be biased at the boundaries of semantic distributions, causing error accumulation during sequential optimization. To tackle this, we introduce a novel hashing approach termed Distribution-based Structure Mining with Consistency Learning (DEMO) for efficient image-text matching. From a statistical view, DEMO characterizes each image using multiple augmented views, which are considered as samples drawn from its intrinsic semantic distribution. Then, we employ a non-parametric distribution divergence to ensure a robust and precise similarity structure. In addition, we introduce collaborative consistency learning which not only preserves the similarity structure in the Hamming space but also encourages consistency between retrieval distribution from different directions in a self-supervised manner. Extensive experiments on several widely used datasets demonstrate that DEMO achieves superior performance compared with various state-of-the-art methods.
Keywords or keyphrases are often used to highlight a document’s domains or main topics. Unsupervised keyphrase extraction (UKE) has always been highly anticipated because no labeled data is needed to train a model. This paper proposes an augmented graph-based unsupervised model to identify keyphrases from a document by integrating graph and deep learning methods. The proposed model utilizes mutual attention extracted from the pre-trained BERT model to build the candidate graph and augments the graph with global and local context nodes to improve the performance. The proposed model is evaluated on four publicly available datasets against thirteen UKE baselines. The results show that the proposed model is an effective and robust UKE model for long and short documents. Our source code is available on GitHub.
Keyword or keyphrase extraction is to identify words or phrases presenting the main topics of a document. This paper proposes the AttentionRank, a hybrid attention model, to identify keyphrases from a document in an unsupervised manner. AttentionRank calculates self-attention and cross-attention using a pre-trained language model. The self-attention is designed to determine the importance of a candidate within the context of a sentence. The cross-attention is calculated to identify the semantic relevance between a candidate and sentences within a document. We evaluate the AttentionRank on three publicly available datasets against seven baselines. The results show that the AttentionRank is an effective and robust unsupervised keyphrase extraction model on both long and short documents. Source code is available on Github.