This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we generate only three BibTeX files per volume, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
Entity Alignment (EA) aims to find the equivalent entities between two Knowledge Graphs (KGs). Existing methods usually encode the triples of entities as embeddings and learn to align the embeddings, which prevents the direct interaction between the original information of the cross-KG entities. Moreover, they encode the relational triples and attribute triples of an entity in heterogeneous embedding spaces, which prevents them from helping each other. In this paper, we transform both triples into unified textual sequences, and model the EA task as a bi-directional textual entailment task between the sequences of cross-KG entities. Specifically, we feed the sequences of two entities simultaneously into a pre-trained language model (PLM) and propose two kinds of PLM-based entity aligners that model the entailment probability between sequences as the similarity between entities. Our approach captures the unified correlation pattern of two kinds of information between entities, and explicitly models the fine-grained interaction between original entity information. The experiments on five cross-lingual EA datasets show that our approach outperforms the state-of-the-art EA methods and enables the mutual enhancement of the heterogeneous information. Codes are available at https://github.com/OreOZhao/TEA.
Biomedical entity linking is an essential task in biomedical text processing, which aims to map entity mentions in biomedical text, such as clinical notes, to standard terms in a given knowledge base. However, this task is challenging due to the rarity of many biomedical entities in real-world scenarios, which often leads to a lack of annotated data for them. Limited by understanding these unseen entities, traditional biomedical entity linking models suffer from multiple types of linking errors. In this paper, we propose a novel latent feature generation framework BioFEG to address these challenges. Specifically, our BioFEG leverages domain knowledge to train a generative adversarial network, which generates latent semantic features of corresponding mentions for unseen entities. Utilizing these features, we fine-tune our entity encoder to capture fine-grained coherence information of unseen entities and better understand them. This allows models to make linking decisions more accurately, particularly for ambiguous mentions involving rare entities. Extensive experiments on the two benchmark datasets demonstrate the superiority of our proposed framework.
Automatic taxonomy completion aims to attach the emerging concept to an appropriate pair of hypernym and hyponym in the existing taxonomy. Existing methods suffer from the overfitting to leaf-only problem caused by imbalanced leaf and non-leaf samples when training the newly initialized classification head. Besides, they only leverage subtasks, namely attaching the concept to its hypernym or hyponym, as auxiliary supervision for representation learning yet neglect the effects of subtask results on the final prediction. To address the aforementioned limitations, we propose TacoPrompt, a Collaborative Multi-Task Prompt Learning Method for Self-Supervised Taxonomy Completion. First, we perform triplet semantic matching using the prompt learning paradigm to effectively learn non-leaf attachment ability from imbalanced training samples. Second, we design the result context to relate the final prediction to the subtask results by a contextual approach, enhancing prompt-based multi-task learning. Third, we leverage a two-stage retrieval and re-ranking approach to improve the inference efficiency. Experimental results on three datasets show that TacoPrompt achieves state-of-the-art taxonomy completion performance. Codes are available at https://github.com/cyclexu/TacoPrompt.
Multimodal knowledge graph completion (MKGC) aims to predict missing entities in MKGs. Previous works usually share relation representation across modalities. This results in mutual interference between modalities during training, since for a pair of entities, the relation from one modality probably contradicts that from another modality. Furthermore, making a unified prediction based on the shared relation representation treats the input in different modalities equally, while their importance to the MKGC task should be different. In this paper, we propose MoSE, a Modality Split representation learning and Ensemble inference framework for MKGC. Specifically, in the training phase, we learn modality-split relation embeddings for each modality instead of a single modality-shared one, which alleviates the modality interference. Based on these embeddings, in the inference phase, we first make modality-split predictions and then exploit various ensemble methods to combine the predictions with different weights, which models the modality importance dynamically. Experimental results on three KG datasets show that MoSE outperforms state-of-the-art MKGC methods. Codes are available at https://github.com/OreOZhao/MoSE4MKGC.
Medical named entity recognition (NER) and normalization (NEN) are fundamental for constructing knowledge graphs and building QA systems. Existing implementations for medical NER and NEN are suffered from the error propagation between the two tasks. The mispredicted mentions from NER will directly influence the results of NEN. Therefore, the NER module is the bottleneck of the whole system. Besides, the learnable features for both tasks are beneficial to improving the model performance. To avoid the disadvantages of existing models and exploit the generalized representation across the two tasks, we design an end-to-end progressive multi-task learning model for jointly modeling medical NER and NEN in an effective way. There are three level tasks with progressive difficulty in the framework. The progressive tasks can reduce the error propagation with the incremental task settings which implies the lower level tasks gain the supervised signals other than errors from the higher level tasks to improve their performances. Besides, the context features are exploited to enrich the semantic information of entity mentions extracted by NER. The performance of NEN profits from the enhanced entity mention features. The standard entities from knowledge bases are introduced into the NER module for extracting corresponding entity mentions correctly. The empirical results on two publicly available medical literature datasets demonstrate the superiority of our method over nine typical methods.
The narrative event prediction aims to predict what happens after a sequence of events, which is essential to modeling sophisticated real-world events. Existing studies focus on mining the inter-events relationships while ignoring how the events happened, which we called circumstances. With our observation, the event circumstances indicate what will happen next. To incorporate event circumstances into the narrative event prediction, we propose the CircEvent, which adopts the two multi-head attention to retrieve circumstances at the local and global levels. We also introduce a regularization of attention weights to leverage the alignment between events and local circumstances. The experimental results demonstrate our CircEvent outperforms existing baselines by 12.2%. The further analysis demonstrates the effectiveness of our multi-head attention modules and regularization.