This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we generate only three BibTeX files per volume, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
Retrieval-based code question answering seeks to match user queries in natural language to relevant code snippets. Previous approaches typically rely on pretraining models using crafted bi-modal and uni-modal datasets to align text and code representations. In this paper, we introduce ProCQA, a large-scale programming question answering dataset extracted from the StackOverflow community, offering naturally structured mixed-modal QA pairs. To validate its effectiveness, we propose a modality-agnostic contrastive pre-training approach to improve the alignment of text and code representations of current code language models. Compared to previous models that primarily employ bimodal and unimodal pairs extracted from CodeSearchNet for pre-training, our model exhibits significant performance improvements across a wide range of code retrieval benchmarks.
The long-standing one-to-many issue of the open-domain dialogues poses significant challenges for automatic evaluation methods, i.e., there may be multiple suitable responses which differ in semantics for a given conversational context. To tackle this challenge, we propose a novel learning-based automatic evaluation metric (CMN), which can robustly evaluate open-domain dialogues by augmenting Conditional Variational Autoencoders (CVAEs) with a Next Sentence Prediction (NSP) objective and employing Mutual Information (MI) to model the semantic similarity of text in the latent space. Experimental results on two open-domain dialogue datasets demonstrate the superiority of our method compared with a wide range of baselines, especially in handling responses which are distant to the “golden” reference responses in semantics.
Adaptive training approaches, widely used in sequence-to-sequence models, commonly reweigh the losses of different target tokens based on priors, e.g. word frequency. However, most of them do not consider the variation of learning difficulty in different training steps, and overly emphasize the learning of difficult one-hot labels, making the learning deterministic and sub-optimal. In response, we present Token-Level Self-Evolution Training (SE), a simple and effective dynamic training method to fully and wisely exploit the knowledge from data. SE focuses on dynamically learning the under-explored tokens for each forward pass and adaptively regularizes the training by introducing a novel token-specific label smoothing approach. Empirically, SE yields consistent and significant improvements in three tasks, i.e. machine translation, summarization, and grammatical error correction. Encouragingly, we achieve averaging +0.93 BLEU improvement on three machine translation tasks. Analyses confirm that, besides improving lexical accuracy, SE enhances generation diversity and model generalization.
Transferability estimation has been attached to great attention in the computer vision fields. Researchers try to estimate with low computational cost the performance of a model when transferred from a source task to a given target task. Considering the effectiveness of such estimations, the communities of natural language processing also began to study similar problems for the selection of pre-trained language models. However, there is a lack of a comprehensive comparison between these estimation methods yet. Also, the differences between vision and language scenarios make it doubtful whether previous conclusions can be established across fields. In this paper, we first conduct a thorough survey of existing transferability estimation methods being able to find the most suitable model, then we conduct a detailed empirical study for the surveyed methods based on the GLUE benchmark. From qualitative and quantitative analyses, we demonstrate the strengths and weaknesses of existing methods and show that H-Score generally performs well with superiorities in effectiveness and efficiency. We also outline the difficulties of consideration of training details, applicability to text generation, and consistency to certain metrics which shed light on future directions.
Mixture-of-Experts (MoE) networks have been proposed as an efficient way to scale up model capacity and implement conditional computing. However, the study of MoE components mostly focused on the feedforward layer in Transformer architecture. This paper proposes the Mixture of Attention Heads (MoA), a new architecture that combines multi-head attention with the MoE mechanism. MoA includes a set of attention heads that each has its own set of parameters. Given an input, a router dynamically selects a subset of k attention heads per token. This conditional computation schema allows MoA to achieve stronger performance than the standard multi-head attention layer. Furthermore, the sparsely gated MoA can easily scale up the number of attention heads and the number of parameters while preserving computational efficiency. Despite performance improvements, MoA also automatically differentiates heads’ utilities, providing a new perspective to discuss the model’s interpretability. We conducted experiments on several important tasks, including Machine Translation and Masked Language Modeling. Experiments have shown promising results on several tasks against strong baselines that involve large and very deep models.
Dual-Encoders is a promising mechanism for answer retrieval in question answering (QA) systems. Currently most conventional Dual-Encoders learn the semantic representations of questions and answers merely through matching score. Researchers proposed to introduce the QA interaction features in scoring function but at the cost of low efficiency in inference stage. To keep independent encoding of questions and answers during inference stage, variational auto-encoder is further introduced to reconstruct answers (questions) from question (answer) embeddings as an auxiliary task to enhance QA interaction in representation learning in training stage. However, the needs of text generation and answer retrieval are different, which leads to hardness in training. In this work, we propose a framework to enhance the Dual-Encoders model with question answer cross-embeddings and a novel Geometry Alignment Mechanism (GAM) to align the geometry of embeddings from Dual-Encoders with that from Cross-Encoders. Extensive experimental results show that our framework significantly improves Dual-Encoders model and outperforms the state-of-the-art method on multiple answer retrieval datasets.
In Community-based Question Answering system(CQA), Answer Selection(AS) is a critical task, which focuses on finding a suitable answer within a list of candidate answers. For neural network models, the key issue is how to model the representations of QA text pairs and calculate the interactions between them. We propose a Sequential Attention with Keyword Mask model(SAKM) for CQA to imitate human reading behavior. Question and answer text regard each other as context within keyword-mask attention when encoding the representations, and repeat multiple times(hops) in a sequential style. So the QA pairs capture features and information from both question text and answer text, interacting and improving vector representations iteratively through hops. The flexibility of the model allows to extract meaningful keywords from the sentences and enhance diverse mutual information. We perform on answer selection tasks and multi-level answer ranking tasks. Experiment results demonstrate the superiority of our proposed model on community-based QA datasets.
The segmentation problem is one of the fundamental challenges associated with name entity recognition (NER) tasks that aim to reduce the boundary error when detecting a sequence of entity words. A considerable number of advanced approaches have been proposed and most of them exhibit performance deterioration when entities become longer. Inspired by previous work in which a multi-task strategy is used to solve segmentation problems, we design a similarity based auxiliary classifier (SAC), which can distinguish entity words from non-entity words. Unlike conventional classifiers, SAC uses vectors to indicate tags. Therefore, SAC can calculate the similarities between words and tags, and then compute a weighted sum of the tag vectors, which can be considered a useful feature for NER tasks. Empirical results are used to verify the rationality of the SAC structure and demonstrate the SAC model’s potential in performance improvement against our baseline approaches.
It has been proven that automatic conversational agents can be built up using the Endto-End Neural Response Generation (NRG) framework, and such a data-driven methodology requires a large number of dialog pairs for model training and reasonable evaluation metrics for testing. This paper proposes a Large Scale Domain-Specific Conversational Corpus (LSDSCC) composed of high-quality queryresponse pairs extracted from the domainspecific online forum, with thorough preprocessing and cleansing procedures. Also, a testing set, including multiple diverse responses annotated for each query, is constructed, and on this basis, the metrics for measuring the diversity of generated results are further presented. We evaluate the performances of neural dialog models with the widely applied diversity boosting strategies on the proposed dataset. The experimental results have shown that our proposed corpus can be taken as a new benchmark dataset for the NRG task, and the presented metrics are promising to guide the optimization of NRG models by quantifying the diversity of the generated responses reasonably.