This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we generate only three BibTeX files per volume, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
Ancient Chinese texts have no sentence boundaries and punctuation. Adding modern Chinese punctuation to theses texts requires expertise, time and efforts. Automatic sentence segmentation and punctuation is considered as a basic task for Ancient Chinese processing, but there is no shared task to evaluate the performances of different systems. This paper presents the results of the first ancient Chinese sentence segmentation and punctuation bakeoff, which is held at the Third Workshop on Language Technologies for Historical and Ancient Languages (LT4HALA) 2024. The contest uses metrics for detailed evaluations of 4 genres of unpublished texts with 11 punctuation types. Six teams submitted 32 running results. In the closed modality, the participants are only allowed to use the training data, the highest obtained F1 scores are respectively 88.47% and 75.29% in sentence segmentation and sentence punctuation. The perfermances on the unseen data is 10 percent lower than the published common data, which means there is still space for further improvement. The large language models outperform the traditional models, but LLM changes the original characters around 1-2%, due to over-generation. Thus, post-processing is needed to keep the text consistancy.
“Abstract Meaning Representation has emerged as a prominent area of research in sentence-levelsemantic parsing within the field of natural language processing in recent years. Substantialprogress has been made in various NLP subtasks through the application of AMR. This paperpresents the third Chinese Abstract Meaning Representation Parsing Evaluation, held as part ofthe Technical Evaluation Task Workshop at the 22nd Chinese Computational Linguistics Confer-ence. The evaluation was specifically tailored for the Chinese and utilized the Align-smatch met-ric as the standard evaluation criterion. Building upon high-quality semantic annotation schemesand annotated corpora, this evaluation introduced a new test set comprising interrogative sen-tences for comprehensive evaluation. The results of the evaluation, as measured by the F-score,indicate notable performance achievements. The top-performing team attained a score of 0.8137in the closed test and 0.8261 in the open test, respectively, using the Align-smatch metric. No-tably, the leading result surpassed the SOTA performance at CoNLL 2020 by 3.64 percentagepoints when evaluated using the MRP metric. Further analysis revealed that this significantprogress primarily stemmed from improved relation prediction between concepts. However, thechallenge of effectively utilizing semantic relation alignments remains an area that requires fur-ther enhancement.”
This paper presents the results of the First Ancient Chinese Word Segmentation and POS Tagging Bakeoff (EvaHan), which was held at the Second Workshop on Language Technologies for Historical and Ancient Languages (LT4HALA) 2022, in the context of the 13th Edition of the Language Resources and Evaluation Conference (LREC 2022). We give the motivation for having an international shared contest, as well as the data and tracks. The contest is consisted of two modalities, closed and open. In the closed modality, the participants are only allowed to use the training data, obtained the highest F1 score of 96.03% and 92.05% in word segmentation and POS tagging. In the open modality, the participants can use whatever resource they have, with the highest F1 score of 96.34% and 92.56% in word segmentation and POS tagging. The scores on the blind test dataset decrease around 3 points, which shows that the out-of-vocabulary words still are the bottleneck for lexical analyzers.
Abstract Meaning Representation is a sentence-level meaning representation, which abstracts the meaning of sentences into a rooted acyclic directed graph. With the continuous expansion of Chinese AMR corpus, more and more scholars have developed parsing systems to automatically parse sentences into Chinese AMR. However, the current parsers can’t deal with concept alignment and relation alignment, let alone the evaluation methods for AMR parsing. Therefore, to make up for the vacancy of Chinese AMR parsing evaluation methods, based on AMR evaluation metric smatch, we have improved the algorithm of generating triples so that to make it compatible with concept alignment and relation alignment. Finally, we obtain a new integrity metric align-smatch for paring evaluation. A comparative research then was conducted on 20 manually annotated AMR and gold AMR, with the result that align-smatch works well in alignments and more robust in evaluating arcs. We also put forward some fine-grained metric for evaluating concept alignment, relation alignment and implicit concepts, in order to further measure parsers’ performance in subtasks.
Automated essay scoring (AES) involves the prediction of a score relating to the writing quality of an essay. Most existing works in AES utilize regression objectives or ranking objectives respectively. However, the two types of methods are highly complementary. To this end, in this paper we take inspiration from contrastive learning and propose a novel unified Neural Pairwise Contrastive Regression (NPCR) model in which both objectives are optimized simultaneously as a single loss. Specifically, we first design a neural pairwise ranking model to guarantee the global ranking order in a large list of essays, and then we further extend this pairwise ranking model to predict the relative scores between an input essay and several reference essays. Additionally, a multi-sample voting strategy is employed for inference. We use Quadratic Weighted Kappa to evaluate our model on the public Automated Student Assessment Prize (ASAP) dataset, and the experimental results demonstrate that NPCR outperforms previous methods by a large margin, achieving the state-of-the-art average performance for the AES task.
The study of predicate frame is an important topic for semantic analysis. Abstract Meaning Representation (AMR) is an emerging graph based semantic representation of a sentence. Since core semantic roles defined in the predicate lexicon compose the backbone in an AMR graph, the construction of the lexicon becomes the key issue. The existing lexicons blur senses and frames of predicates, which needs to be refined to meet the tasks like word sense disambiguation and event extraction. This paper introduces the on-going project on constructing a novel predicate lexicon for Chinese AMR corpus. The new lexicon includes 14,389 senses and 10,800 frames of 8,470 words. As some senses can be aligned to more than one frame, and vice versa, we found the alignment between senses is not just one frame per sense. Explicit analysis is given for multiple aligned relations, which proves the necessity of the proposed lexicon for AMR corpus, and supplies real data for linguistic theoretical studies.
Existing works have proved that using law articles as external knowledge can improve the performance of the Legal Judgment Prediction. However, they do not fully use law article information and most of the current work is only for single label samples. In this paper, we propose a Law Article Element-aware Multi-representation Model (LEMM), which can make full use of law article information and can be used for multi-label samples. The model uses the labeled elements of law articles to extract fact description features from multiple angles. It generates multiple representations of a fact for classification. Every label has a law-aware fact representation to encode more information. To capture the dependencies between law articles, the model also introduces a self-attention mechanism between multiple representations. Compared with baseline models like TopJudge, this model improves the accuracy of 5.84%, the macro F1 of 6.42%, and the micro F1 of 4.28%.
Abstract Meaning Representation (AMR) is a meaning representation framework in which the meaning of a full sentence is represented as a single-rooted, acyclic, directed graph. In this article, we describe an on-going project to build a Chinese AMR (CAMR) corpus, which currently includes 10,149 sentences from the newsgroup and weblog portion of the Chinese TreeBank (CTB). We describe the annotation specifications for the CAMR corpus, which follow the annotation principles of English AMR but make adaptations where needed to accommodate the linguistic facts of Chinese. The CAMR specifications also include a systematic treatment of sentence-internal discourse relations. One significant change we have made to the AMR annotation methodology is the inclusion of the alignment between word tokens in the sentence and the concepts/relations in the CAMR annotation to make it easier for automatic parsers to model the correspondence between a sentence and its meaning representation. We develop an annotation tool for CAMR, and the inter-agreement as measured by the Smatch score between the two annotators is 0.83, indicating reliable annotation. We also present some quantitative analysis of the CAMR corpus. 46.71% of the AMRs of the sentences are non-tree graphs. Moreover, the AMR of 88.95% of the sentences has concepts inferred from the context of the sentence but do not correspond to a specific word.
Ellipsis is very common in language. It’s necessary for natural language processing to restore the elided elements in a sentence. However, there’s only a few corpora annotating the ellipsis, which draws back the automatic detection and recovery of the ellipsis. This paper introduces the annotation of ellipsis in Chinese sentences, using a novel graph-based representation Abstract Meaning Representation (AMR), which has a good mechanism to restore the elided elements manually. We annotate 5,000 sentences selected from Chinese TreeBank (CTB). We find that 54.98% of sentences have ellipses. 92% of the ellipses are restored by copying the antecedents’ concepts. and 12.9% of them are the new added concepts. In addition, we find that the elided element is a word or phrase in most cases, but sometimes only the head of a phrase or parts of a phrase, which is rather hard for the automatic recovery of ellipsis.