Tianshi Zheng


2024

pdf
Advancing Abductive Reasoning in Knowledge Graphs through Complex Logical Hypothesis Generation
Jiaxin Bai | Yicheng Wang | Tianshi Zheng | Yue Guo | Xin Liu | Yangqiu Song
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Abductive reasoning is the process of making educated guesses to provide explanations for observations. Although many applications require the use of knowledge for explanations, the utilization of abductive reasoning in conjunction with structured knowledge, such as a knowledge graph, remains largely unexplored. To fill this gap, this paper introduces the task of complex logical hypothesis generation, as an initial step towards abductive logical reasoning with KG. In this task, we aim to generate a complex logical hypothesis so that it can explain a set of observations. We find that the supervised trained generative model can generate logical hypotheses that are structurally closer to the reference hypothesis. However, when generalized to unseen observations, this training objective does not guarantee better hypothesis generation. To address this, we introduce the Reinforcement Learning from Knowledge Graph (RLF-KG) method, which minimizes differences between observations and conclusions drawn from generated hypotheses according to the KG. Experiments show that, with RLF-KG’s assistance, the generated hypotheses provide better explanations, and achieve state-of-the-art results on three widely used KGs.

2023

pdf
TILFA: A Unified Framework for Text, Image, and Layout Fusion in Argument Mining
Qing Zong | Zhaowei Wang | Baixuan Xu | Tianshi Zheng | Haochen Shi | Weiqi Wang | Yangqiu Song | Ginny Wong | Simon See
Proceedings of the 10th Workshop on Argument Mining

A main goal of Argument Mining (AM) is to analyze an author’s stance. Unlike previous AM datasets focusing only on text, the shared task at the 10th Workshop on Argument Mining introduces a dataset including both texts and images. Importantly, these images contain both visual elements and optical characters. Our new framework, TILFA (A Unified Framework for Text, Image, and Layout Fusion in Argument Mining), is designed to handle this mixed data. It excels at not only understanding text but also detecting optical characters and recognizing layout details in images. Our model significantly outperforms existing baselines, earning our team, KnowComp, the 1st place in the leaderboard of Argumentative Stance Classification subtask in this shared task.

pdf
KnowComp Submission for WMT23 Sign Language Translation Task
Baixuan Xu | Haochen Shi | Tianshi Zheng | Qing Zong | Weiqi Wang | Zhaowei Wang | Yangqiu Song
Proceedings of the Eighth Conference on Machine Translation

Sign Language Translation (SLT) is a complex task that involves accurately interpreting sign language gestures and translating them into spoken or written language and vice versa. Its primary objective is to facilitate communication between individuals with hearing difficulties using deep learning systems. Existing approaches leverage gloss annotations of sign language gestures to assist the model in capturing the movement and differentiating various gestures. However, constructing a large-scale gloss-annotated dataset is both expensive and impractical to cover multiple languages, and pre-trained generative models cannot be efficiently used due to the lack of textual source context in SLT. To address these challenges, we propose a gloss-free framework for the WMT23 SLT task. Our system primarily consists of a visual extractor for extracting video embeddings and a generator responsible for producing the translated text. We also employ an embedding alignment block that is trained to align the embedding space of the visual extractor with that of the generator. Despite undergoing extensive training and validation, our system consistently falls short of meeting the baseline performance. Further analysis shows that our model’s poor projection rate prevents it from learning diverse visual embeddings. Our codes and model checkpoints are available at https://github.com/HKUST-KnowComp/SLT.