Tania Avgustinova


2024

pdf
Cross-Linguistic Processing of Non-Compositional Expressions in Slavic Languages
Iuliia Zaitova | Irina Stenger | Muhammad Umer Butt | Tania Avgustinova
Proceedings of the Workshop on Cognitive Aspects of the Lexicon @ LREC-COLING 2024

This study focuses on evaluating and predicting the intelligibility of non-compositional expressions within the context of five closely related Slavic languages: Belarusian, Bulgarian, Czech, Polish, and Ukrainian, as perceived by native speakers of Russian. Our investigation employs a web-based experiment where native Russian respondents take part in free-response and multiple-choice translation tasks. Based on the previous studies in mutual intelligibility and non-compositionality, we propose two predictive factors for reading comprehension of unknown but closely related languages: 1) linguistic distances, which include orthographic and phonological distances; 2) surprisal scores obtained from monolingual Language Models (LMs). Our primary objective is to explore the relationship of these two factors with the intelligibility scores and response times of our web-based experiment. Our findings reveal that, while intelligibility scores from the experimental tasks exhibit a stronger correlation with phonological distances, LM surprisal scores appear to be better predictors of the time participants invest in completing the translation tasks.

2023

pdf
Microsyntactic Unit Detection Using Word Embedding Models: Experiments on Slavic Languages
Iuliia Zaitova | Irina Stenger | Tania Avgustinova
Proceedings of the 14th International Conference on Recent Advances in Natural Language Processing

Microsyntactic units have been defined as language-specific transitional entities between lexicon and grammar, whose idiomatic properties are closely tied to syntax. These units are typically described based on individual constructions, making it difficult to understand them comprehensively as a class. This study proposes a novel approach to detect microsyntactic units using Word Embedding Models (WEMs) trained on six Slavic languages, namely Belarusian, Bulgarian, Czech, Polish, Russian, and Ukrainian, and evaluates how well these models capture the nuances of syntactic non-compositionality. To evaluate the models, we develop a cross-lingual inventory of microsyntactic units using the lists of microsyntantic units available at the Russian National Corpus. Our results demonstrate the effectiveness of WEMs in capturing microsyntactic units across all six Slavic languages under analysis. Additionally, we find that WEMs tailored for syntax-based tasks consistently outperform other WEMs at the task. Our findings contribute to the theory of microsyntax by providing insights into the detection of microsyntactic units and their cross-linguistic properties.

2022

pdf
Modeling the Impact of Syntactic Distance and Surprisal on Cross-Slavic Text Comprehension
Irina Stenger | Philip Georgis | Tania Avgustinova | Bernd Möbius | Dietrich Klakow
Proceedings of the Thirteenth Language Resources and Evaluation Conference

We focus on the syntactic variation and measure syntactic distances between nine Slavic languages (Belarusian, Bulgarian, Croatian, Czech, Polish, Slovak, Slovene, Russian, and Ukrainian) using symmetric measures of insertion, deletion and movement of syntactic units in the parallel sentences of the fable “The North Wind and the Sun”. Additionally, we investigate phonetic and orthographic asymmetries between selected languages by means of the information theoretical notion of surprisal. Syntactic distance and surprisal are, thus, considered as potential predictors of mutual intelligibility between related languages. In spoken and written cloze test experiments for Slavic native speakers, the presented predictors will be validated as to whether variations in syntax lead to a slower or impeded intercomprehension of Slavic texts.

2021

pdf
Are Language-Agnostic Sentence Representations Actually Language-Agnostic?
Yu Chen | Tania Avgustinova
Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2021)

With the emergence of pre-trained multilingual models, multilingual embeddings have been widely applied in various natural language processing tasks. Language-agnostic models provide a versatile way to convert linguistic units from different languages into a shared vector representation space. The relevant work on multilingual sentence embeddings has reportedly reached low error rate in cross-lingual similarity search tasks. In this paper, we apply the pre-trained embedding models and the cross-lingual similarity search task in diverse scenarios, and observed large discrepancy in results in comparison to the original paper. Our findings on cross-lingual similarity search with different newly constructed multilingual datasets show not only correlation with observable language similarities but also strong influence from factors such as translation paths, which limits the interpretation of the language-agnostic property of the LASER model. %

pdf
incom.py 2.0 - Calculating Linguistic Distances and Asymmetries in Auditory Perception of Closely Related Languages
Marius Mosbach | Irina Stenger | Tania Avgustinova | Bernd Möbius | Dietrich Klakow
Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2021)

We present an extended version of a tool developed for calculating linguistic distances and asymmetries in auditory perception of closely related languages. Along with evaluating the metrics available in the initial version of the tool, we introduce word adaptation entropy as an additional metric of linguistic asymmetry. Potential predictors of speech intelligibility are validated with human performance in spoken cognate recognition experiments for Bulgarian and Russian. Special attention is paid to the possibly different contributions of vowels and consonants in oral intercomprehension. Using incom.py 2.0 it is possible to calculate, visualize, and validate three measurement methods of linguistic distances and asymmetries as well as carrying out regression analyses in speech intelligibility between related languages.

pdf
How Familiar Does That Sound? Cross-Lingual Representational Similarity Analysis of Acoustic Word Embeddings
Badr Abdullah | Iuliia Zaitova | Tania Avgustinova | Bernd Möbius | Dietrich Klakow
Proceedings of the Fourth BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP

How do neural networks “perceive” speech sounds from unknown languages? Does the typological similarity between the model’s training language (L1) and an unknown language (L2) have an impact on the model representations of L2 speech signals? To answer these questions, we present a novel experimental design based on representational similarity analysis (RSA) to analyze acoustic word embeddings (AWEs)—vector representations of variable-duration spoken-word segments. First, we train monolingual AWE models on seven Indo-European languages with various degrees of typological similarity. We then employ RSA to quantify the cross-lingual similarity by simulating native and non-native spoken-word processing using AWEs. Our experiments show that typological similarity indeed affects the representational similarity of the models in our study. We further discuss the implications of our work on modeling speech processing and language similarity with neural networks.

2020

pdf
Rediscovering the Slavic Continuum in Representations Emerging from Neural Models of Spoken Language Identification
Badr M. Abdullah | Jacek Kudera | Tania Avgustinova | Bernd Möbius | Dietrich Klakow
Proceedings of the 7th Workshop on NLP for Similar Languages, Varieties and Dialects

Deep neural networks have been employed for various spoken language recognition tasks, including tasks that are multilingual by definition such as spoken language identification (LID). In this paper, we present a neural model for Slavic language identification in speech signals and analyze its emergent representations to investigate whether they reflect objective measures of language relatedness or non-linguists’ perception of language similarity. While our analysis shows that the language representation space indeed captures language relatedness to a great extent, we find perceptual confusability to be the best predictor of the language representation similarity.

pdf
The INCOMSLAV Platform: Experimental Website with Integrated Methods for Measuring Linguistic Distances and Asymmetries in Receptive Multilingualism
Irina Stenger | Klara Jagrova | Tania Avgustinova
Proceedings of the LREC 2020 Workshop on "Citizen Linguistics in Language Resource Development"

We report on a web-based resource for conducting intercomprehension experiments with native speakers of Slavic languages and present our methods for measuring linguistic distances and asymmetries in receptive multilingualism. Through a website which serves as a platform for online testing, a large number of participants with different linguistic backgrounds can be targeted. A statistical language model is used to measure information density and to gauge how language users master various degrees of (un)intelligibilty. The key idea is that intercomprehension should be better when the model adapted for understanding the unknown language exhibits relatively low average distance and surprisal. All obtained intelligibility scores together with distance and asymmetry measures for the different language pairs and processing directions are made available as an integrated online resource in the form of a Slavic intercomprehension matrix (SlavMatrix).

2019

pdf
Machine Translation from an Intercomprehension Perspective
Yu Chen | Tania Avgustinova
Proceedings of the Fourth Conference on Machine Translation (Volume 3: Shared Task Papers, Day 2)

Within the first shared task on machine translation between similar languages, we present our first attempts on Czech to Polish machine translation from an intercomprehension perspective. We propose methods based on the mutual intelligibility of the two languages, taking advantage of their orthographic and phonological similarity, in the hope to improve over our baselines. The translation results are evaluated using BLEU. On this metric, none of our proposals could outperform the baselines on the final test set. The current setups are rather preliminary, and there are several potential improvements we can try in the future.

pdf
incom.py - A Toolbox for Calculating Linguistic Distances and Asymmetries between Related Languages
Marius Mosbach | Irina Stenger | Tania Avgustinova | Dietrich Klakow
Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2019)

Languages may be differently distant from each other and their mutual intelligibility may be asymmetric. In this paper we introduce incom.py, a toolbox for calculating linguistic distances and asymmetries between related languages. incom.py allows linguist experts to quickly and easily perform statistical analyses and compare those with experimental results. We demonstrate the efficacy of incom.py in an incomprehension experiment on two Slavic languages: Bulgarian and Russian. Using incom.py we were able to validate three methods to measure linguistic distances and asymmetries: Levenshtein distance, word adaptation surprisal, and conditional entropy as predictors of success in a reading intercomprehension experiment.

2016

pdf
Orthographic and Morphological Correspondences between Related Slavic Languages as a Base for Modeling of Mutual Intelligibility
Andrea Fischer | Klára Jágrová | Irina Stenger | Tania Avgustinova | Dietrich Klakow | Roland Marti
Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC'16)

In an intercomprehension scenario, typically a native speaker of language L1 is confronted with output from an unknown, but related language L2. In this setting, the degree to which the receiver recognizes the unfamiliar words greatly determines communicative success. Despite exhibiting great string-level differences, cognates may be recognized very successfully if the receiver is aware of regular correspondences which allow to transform the unknown word into its familiar form. Modeling L1-L2 intercomprehension then requires the identification of all the regular correspondences between languages L1 and L2. We here present a set of linguistic orthographic correspondences manually compiled from comparative linguistics literature along with a set of statistically-inferred suggestions for correspondence rules. In order to do statistical inference, we followed the Minimum Description Length principle, which proposes to choose those rules which are most effective at describing the data. Our statistical model was able to reproduce most of our linguistic correspondences (88.5% for Czech-Polish and 75.7% for Bulgarian-Russian) and furthermore allowed to easily identify many more non-trivial correspondences which also cover aspects of morphology.

2012

pdf
CLIMB grammars: three projects using metagrammar engineering
Antske Fokkens | Tania Avgustinova | Yi Zhang
Proceedings of the Eighth International Conference on Language Resources and Evaluation (LREC'12)

This paper introduces the CLIMB (Comparative Libraries of Implementations with Matrix Basis) methodology and grammars. The basic idea behind CLIMB is to use code generation as a general methodology for grammar development in order to create a more systematic approach to grammar development. The particular method used in this paper is closely related to the LinGO Grammar Matrix. Like the Grammar Matrix, resulting grammars are HPSG grammars that can map bidirectionally between strings and MRS representations. The main purpose of this paper is to provide insight into the process of using CLIMB for grammar development. In addition, we describe three projects that make use of this methodology or have concrete plans to adapt CLIMB in the future: CLIMB for Germanic languages, CLIMB for Slavic languages and CLIMB to combine two grammars of Mandarin Chinese. We present the first results that indicate feasibility and development time improvements for creating a medium to large coverage precision grammar.

2009

pdf bib
Exploiting the Russian National Corpus in the Development of a Russian Resource Grammar
Tania Avgustinova | Yi Zhang
Proceedings of the Workshop on Adaptation of Language Resources and Technology to New Domains

2000

pdf
An ontology of systematic relations for a shared grammar of Slavic
Tania Avgustinova | Hans Uszkoreit
COLING 2000 Volume 1: The 18th International Conference on Computational Linguistics

1990

pdf
Syntactic Description of Free Word Order Languages
Tania Avgustinova | Karel Oliva
COLING 1990 Volume 3: Papers presented to the 13th International Conference on Computational Linguistics