This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we generate only three BibTeX files per volume, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
Ad text generation is vital for automatic advertising in various fields through search engine advertising (SEA) to avoid the cost problem caused by laborious human efforts for creating ad texts. Even though ad creators create the landing page (LP) for advertising and we can expect its quality, conventional approaches with reinforcement learning (RL) mostly focus on advertising keywords rather than LP information. This work investigates and shows the effective usage of LP information as a reward in RL-based ad text generation through automatic and human evaluations. Our analysis of the actually generated ad text shows that LP information can be a crucial reward by appropriately scaling its value range to improve ad text generation performance.
In response to the limitations of manual ad creation, significant research has been conducted in the field of automatic ad text generation (ATG). However, the lack of comprehensive benchmarks and well-defined problem sets has made comparing different methods challenging. To tackle these challenges, we standardize the task of ATG and propose a first benchmark dataset, CAMERA, carefully designed and enabling the utilization of multi-modal information and facilitating industry-wise evaluations. Our extensive experiments with a variety of nine baselines, from classical methods to state-of-the-art models including large language models (LLMs), show the current state and the remaining challenges. We also explore how existing metrics in ATG and an LLM-based evaluator align with human evaluations.
Learning better sentence embeddings leads to improved performance for natural language understanding tasks including semantic textual similarity (STS) and natural language inference (NLI). As prior studies leverage large-scale labeled NLI datasets for fine-tuning masked language models to yield sentence embeddings, task performance for languages other than English is often left behind. In this study, we directly compared two data augmentation techniques as potential solutions for monolingual STS: - (a): _cross-lingual transfer_ that exploits English resources alone as training data to yield non-English sentence embeddings as zero-shot inference, and - (b) _machine translation_ that coverts English data into pseudo non-English training data in advance. In our experiments on monolingual STS in Japanese and Korean, we find that the two data techniques yield performance on par. In addition, we find a superiority of Wikipedia domain over NLI domain as unlabeled training data for these languages. Combining our findings, we further demonstrate that the cross-lingual transfer of Wikipedia data exhibits improved performance.
Writing an ad text that attracts people and persuades them to click or act is essential for the success of search engine advertising. Therefore, ad creators must consider various aspects of advertising appeals (A3) such as the price, product features, and quality. However, products and services exhibit unique effective A3 for different industries. In this work, we focus on exploring the effective A3 for different industries with the aim of assisting the ad creation process. To this end, we created a dataset of advertising appeals and used an existing model that detects various aspects for ad texts. Our experiments demonstrated %through correlation analysis that different industries have their own effective A3 and that the identification of the A3 contributes to the estimation of advertising performance.
The task of generating weather-forecast comments from meteorological simulations has the following requirements: (i) the changes in numerical values for various physical quantities need to be considered, (ii) the weather comments should be dependent on delivery time and area information, and (iii) the comments should provide useful information for users. To meet these requirements, we propose a data-to-text model that incorporates three types of encoders for numerical forecast maps, observation data, and meta-data. We also introduce weather labels representing weather information, such as sunny and rain, for our model to explicitly describe useful information. We conducted automatic and human evaluations. The results indicate that our model performed best against baselines in terms of informativeness. We make our code and data publicly available.
This paper describes NTT’s submission to the WMT19 robustness task. This task mainly focuses on translating noisy text (e.g., posts on Twitter), which presents different difficulties from typical translation tasks such as news. Our submission combined techniques including utilization of a synthetic corpus, domain adaptation, and a placeholder mechanism, which significantly improved over the previous baseline. Experimental results revealed the placeholder mechanism, which temporarily replaces the non-standard tokens including emojis and emoticons with special placeholder tokens during translation, improves translation accuracy even with noisy texts.
This paper presents a novel encoder-decoder model for automatically generating market comments from stock prices. The model first encodes both short- and long-term series of stock prices so that it can mention short- and long-term changes in stock prices. In the decoding phase, our model can also generate a numerical value by selecting an appropriate arithmetic operation such as subtraction or rounding, and applying it to the input stock prices. Empirical experiments show that our best model generates market comments at the fluency and the informativeness approaching human-generated reference texts.