Shaoning Xiao


2022

pdf
Rethinking Multi-Modal Alignment in Multi-Choice VideoQA from Feature and Sample Perspectives
Shaoning Xiao | Long Chen | Kaifeng Gao | Zhao Wang | Yi Yang | Zhimeng Zhang | Jun Xiao
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Reasoning about causal and temporal event relations in videos is a new destination of Video Question Answering (VideoQA). The major stumbling block to achieve this purpose is the semantic gap between language and video since they are at different levels of abstraction. Existing efforts mainly focus on designing sophisticated architectures while utilizing frame- or object-level visual representations. In this paper, we reconsider the multi-modal alignment problem in VideoQA from feature and sample perspectives to achieve better performance. From the view of feature, we break down the video into trajectories and first leverage trajectory feature in VideoQA to enhance the alignment between two modalities. Moreover, we adopt a heterogeneous graph architecture and design a hierarchical framework to align both trajectory-level and frame-level visual feature with language feature. In addition, we found that VideoQA models are largely dependent on languagepriors and always neglect visual-language interactions. Thus, two effective yet portable training augmentation strategies are designed to strengthen the cross-modal correspondence ability of our model from the view of sample. Extensive results show that our method outperforms all the state-of the-art models on the challenging NExT-QA benchmark.

2021

pdf
Natural Language Video Localization with Learnable Moment Proposals
Shaoning Xiao | Long Chen | Jian Shao | Yueting Zhuang | Jun Xiao
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Given an untrimmed video and a natural language query, Natural Language Video Localization (NLVL) aims to identify the video moment described by query. To address this task, existing methods can be roughly grouped into two groups: 1) propose-and-rank models first define a set of hand-designed moment candidates and then find out the best-matching one. 2) proposal-free models directly predict two temporal boundaries of the referential moment from frames. Currently, almost all the propose-and-rank methods have inferior performance than proposal-free counterparts. In this paper, we argue that the performance of propose-and-rank models are underestimated due to the predefined manners: 1) Hand-designed rules are hard to guarantee the complete coverage of targeted segments. 2) Densely sampled candidate moments cause redundant computation and degrade the performance of ranking process. To this end, we propose a novel model termed LPNet (Learnable Proposal Network for NLVL) with a fixed set of learnable moment proposals. The position and length of these proposals are dynamically adjusted during training process. Moreover, a boundary-aware loss has been proposed to leverage frame-level information and further improve performance. Extensive ablations on two challenging NLVL benchmarks have demonstrated the effectiveness of LPNet over existing state-of-the-art methods.