This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we generate only three BibTeX files per volume, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
State-of-the-art target-oriented opinion word extraction (TOWE) models typically use BERT-based text encoders that operate on the word level, along with graph convolutional networks (GCNs) that incorporate syntactic information extracted from syntax trees. These methods achieve limited gains with GCNs and have difficulty using BERT wordpieces. Meanwhile, BERT wordpieces are known to be effective at representing rare words or words with insufficient context information. To address this issue, this work trades syntax trees for BERT wordpieces by entirely removing the GCN component from the methods’ architectures. To enhance TOWE performance, we tackle the issue of aspect representation loss during encoding. Instead of solely utilizing a sentence as the input, we use a sentence-aspect pair. Our relatively simple approach achieves state-of-the-art results on benchmark datasets and should serve as a strong baseline for further research.
Overfitting is a notorious problem when there is insufficient data to train deep neural networks in machine learning tasks. Data augmentation regularization methods such as Dropout, Mixup, and their enhanced variants are effective and prevalent, and achieve promising performance to overcome overfitting. However, in text learning, most of the existing regularization approaches merely adopt ideas from computer vision without considering the importance of dimensionality in natural language processing. In this paper, we argue that the property is essential to overcome overfitting in text learning. Accordingly, we present a saliency map informed textual data augmentation and regularization framework, which combines Dropout and Mixup, namely DropMix, to mitigate the overfitting problem in text learning. In addition, we design a procedure that drops and patches fine grained shapes of the saliency map under the DropMix framework to enhance regularization. Empirical studies confirm the effectiveness of the proposed approach on 12 text classification tasks.
Weakly supervised phrase grounding aims to learn an alignment between phrases in a caption and objects in a corresponding image using only caption-image annotations, i.e., without phrase-object annotations. Previous methods typically use a caption-image contrastive loss to indirectly supervise the alignment between phrases and objects, which hinders the maximum use of the intrinsic structure of the multimodal data and leads to unsatisfactory performance. In this work, we directly use the phrase-object contrastive loss in the condition that no positive annotation is available in the first place. Specifically, we propose a novel contrastive learning framework based on the expectation-maximization algorithm that adaptively refines the target prediction. Experiments on two widely used benchmarks, Flickr30K Entities and RefCOCO+, demonstrate the effectiveness of our framework. We obtain 63.05% top-1 accuracy on Flickr30K Entities and 59.51%/43.46% on RefCOCO+ TestA/TestB, outperforming the previous methods by a large margin, even surpassing a previous SoTA that uses a pre-trained vision-language model. Furthermore, we deliver a theoretical analysis of the effectiveness of our method from the perspective of the maximum likelihood estimate with latent variables.
Recent interest in entity linking has focused in the zero-shot scenario, where at test time the entity mention to be labelled is never seen during training, or may belong to a different domain from the source domain. Current work leverage pre-trained BERT with the implicit assumption that it bridges the gap between the source and target domain distributions. However, fine-tuned BERT has a considerable underperformance at zero-shot when applied in a different domain. We solve this problem by proposing a Transformational Biencoder that incorporates a transformation into BERT to perform a zero-shot transfer from the source domain during training. As like previous work, we rely on negative entities to encourage our model to discriminate the golden entities during training. To generate these negative entities, we propose a simple but effective strategy that takes the domain of the golden entity into perspective. Our experimental results on the benchmark dataset Zeshel show effectiveness of our approach and achieve new state-of-the-art.
Knowledge graphs typically contain a large number of entities but often cover only a fraction of all relations between them (i.e., incompleteness). Zero-shot link prediction (ZSLP) is a popular way to tackle the problem by automatically identifying unobserved relations between entities. Most recent approaches use textual features of relations (e.g., surface name or textual descriptions) as auxiliary information to improve the encoded representation. These methods lack robustness as they are bound to support only tokens from a fixed vocabulary and unable to model out-of-vocabulary (OOV) words. Subword units such as character n-grams have the capability of generating more expressive representations for OOV words. Hence, in this paper, we propose a Hierarchical N-gram framework for Zero-Shot Link Prediction (HNZSLP) that leverages character n-gram information for ZSLP. Our approach works by first constructing a hierarchical n-gram graph from the surface name of relations. Subsequently, a new Transformer-based network models the hierarchical n-gram graph to learn a relation embedding for ZSLP. Experimental results show that our proposed HNZSLP method achieves state-of-the-art performance on two standard ZSLP datasets.
Event argument extraction is a challenging subtask of event extraction, aiming to identify and assign roles to arguments under a certain event. Existing methods extract arguments of each role independently, ignoring the relationship between different roles. Such an approach hinders the model from learning explicit interactions between different roles to improve the performance of individual argument extraction. As a solution, we design a neural model that we refer to as the Explicit Role Interaction Network (ERIN) which allows for dynamically capturing the correlations between different argument roles within an event. Extensive experiments on the benchmark dataset ACE2005 demonstrate the superiority of our proposed model to existing approaches.
Target-oriented opinion words extraction (TOWE) (Fan et al., 2019b) is a new subtask of target-oriented sentiment analysis that aims to extract opinion words for a given aspect in text. Current state-of-the-art methods leverage position embeddings to capture the relative position of a word to the target. However, the performance of these methods depends on the ability to incorporate this information into word representations. In this paper, we explore a variety of text encoders based on pretrained word embeddings or language models that leverage part-of-speech and position embeddings, aiming to examine the actual contribution of each component in TOWE. We also adapt a graph convolutional network (GCN) to enhance word representations by incorporating syntactic information. Our experimental results demonstrate that BiLSTM-based models can effectively encode position information into word representations while using a GCN only achieves marginal gains. Interestingly, our simple methods outperform several state-of-the-art complex neural structures.
The idea of using multi-task learning approaches to address the joint extraction of entity and relation is motivated by the relatedness between the entity recognition task and the relation classification task. Existing methods using multi-task learning techniques to address the problem learn interactions among the two tasks through a shared network, where the shared information is passed into the task-specific networks for prediction. However, such an approach hinders the model from learning explicit interactions between the two tasks to improve the performance on the individual tasks. As a solution, we design a multi-task learning model which we refer to as recurrent interaction network which allows the learning of interactions dynamically, to effectively model task-specific features for classification. Empirical studies on two real-world datasets confirm the superiority of the proposed model.
We propose a method based on neural networks to identify the sentiment polarity of opinion words expressed on a specific aspect of a sentence. Although a large majority of works typically focus on leveraging the expressive power of neural networks in handling this task, we explore the possibility of integrating dependency trees with neural networks for representation learning. To this end, we present a convolution over a dependency tree (CDT) model which exploits a Bi-directional Long Short Term Memory (Bi-LSTM) to learn representations for features of a sentence, and further enhance the embeddings with a graph convolutional network (GCN) which operates directly on the dependency tree of the sentence. Our approach propagates both contextual and dependency information from opinion words to aspect words, offering discriminative properties for supervision. Experimental results ranks our approach as the new state-of-the-art in aspect-based sentiment classification.