Sabrina Mennella


2024

pdf
Estimating Commonsense Knowledge from a Linguistic Analysis on Information Distribution
Sabrina Mennella | Maria Di Maro | Martina Di Bratto
Proceedings of the Sixth International Conference on Computational Linguistics in Bulgaria (CLIB 2024)

Commonsense Knowledge (CSK) is defined as a complex and multifaceted structure, encompassing a wide range of knowledge and reasoning generally acquired through everyday experiences. As CSK is often implicit in communication, it poses a challenge for AI systems to simulate human-like interaction. This work aims to deepen the CSK information structure from a linguistic perspective, starting from its organisation in conversations. To achieve this goal, we developed a three-level analysis model to extract more insights about this knowledge, focusing our attention on the second level. In particular, we aimed to extract the distribution of explicit actions and their execution order in the communicative flow. We built an annotation scheme based on FrameNet and applied it to a dialogical corpus on the culinary domain. Preliminary results indicate that certain frames occur earlier in the dialogues, while others occur towards the process’s end. These findings contribute to the systematic nature of actions by establishing clear patterns and relationships between frames.

2022

pdf
A Multi-source Graph Representation of the Movie Domain for Recommendation Dialogues Analysis
Antonio Origlia | Martina Di Bratto | Maria Di Maro | Sabrina Mennella
Proceedings of the Thirteenth Language Resources and Evaluation Conference

In dialogue analysis, characterising named entities in the domain of interest is relevant in order to understand how people are making use of them for argumentation purposes. The movie recommendation domain is a frequently considered case study for many applications and by linguistic studies and, since many different resources have been collected throughout the years to describe it, a single database combining all these data sources is a valuable asset for cross-disciplinary investigations. We propose an integrated graph-based structure of multiple resources, enriched with the results of the application of graph analytics approaches to provide an encompassing view of the domain and of the way people talk about it during the recommendation task. While we cannot distribute the final resource because of licensing issues, we share the code to assemble and process it once the reference data have been obtained from the original sources.