Rochana Chaturvedi


2022

pdf
LCHQA-Summ: Multi-perspective Summarization of Publicly Sourced Consumer Health Answers
Abari Bhattacharya | Rochana Chaturvedi | Shweta Yadav
Proceedings of the First Workshop on Natural Language Generation in Healthcare

Community question answering forums provide a convenient platform for people to source answers to their questions including those related to healthcare from the general public. The answers to user queries are generally long and contain multiple different perspectives, redundancy or irrelevant answers. This presents a novel challenge for domain-specific concise and correct multi-answer summarization which we propose in this paper.

2020

pdf
Divide and Conquer: From Complexity to Simplicity for Lay Summarization
Rochana Chaturvedi | Saachi | Jaspreet Singh Dhani | Anurag Joshi | Ankush Khanna | Neha Tomar | Swagata Duari | Alka Khurana | Vasudha Bhatnagar
Proceedings of the First Workshop on Scholarly Document Processing

We describe our approach for the 1st Computational Linguistics Lay Summary Shared Task CL-LaySumm20. The task is to produce non-technical summaries of scholarly documents. The summary should be within easy grasp of a layman who may not be well versed with the domain of the research article. We propose a two step divide-and-conquer approach. First, we judiciously select segments of the documents that are not overly pedantic and are likely to be of interest to the laity, and over-extract sentences from each segment using an unsupervised network based method. Next, we perform abstractive summarization on these extractions and systematically merge the abstractions. We run ablation studies to establish that each step in our pipeline is critical for improvement in the quality of lay summary. Our approach leverages state-of-the-art pre-trained deep neural network based models as zero-shot learners to achieve high scores on the task.