This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we generate only three BibTeX files per volume, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
Contrastive language-image pre-training (CLIP) models have demonstrated considerable success across various vision-language tasks, such as text-to-image retrieval, where the model is required to effectively process natural language input to produce an accurate visual output. However, current models still face limitations in dealing with linguistic variations in input queries, such as paraphrases, making it challenging to handle a broad range of user queries in real-world applications. In this study, we introduce a straightforward fine-tuning approach to enhance the representations of CLIP models for paraphrases. Our approach involves a two-step paraphrase generation process, where we automatically create two categories of paraphrases from web-scale image captions by leveraging large language models. Subsequently, we fine-tune the CLIP text encoder using these generated paraphrases while freezing the image encoder. Our resulting model, which we call ParaCLIP, exhibits significant improvements over baseline CLIP models across various tasks, including paraphrased retrieval (with rank similarity scores improved by up to 7.6% and 9.6%), Visual Genome Relation and Attribution, as well as seven semantic textual similarity tasks.
Influence functions (IFs) are a powerful tool for detecting anomalous examples in large scale datasets. However, they are unstable when applied to deep networks. In this paper, we provide an explanation for the instability of IFs and develop a solution to this problem. We show that IFs are unreliable when the two data points belong to two different classes. Our solution leverages class information to improve the stability of IFs.Extensive experiments show that our modification significantly improves the performance and stability of IFs while incurring no additional computational cost.
Textual scene graph parsing has become increasingly important in various vision-language applications, including image caption evaluation and image retrieval. However, existing scene graph parsers that convert image captions into scene graphs often suffer from two types of errors. First, the generated scene graphs fail to capture the true semantics of the captions or the corresponding images, resulting in a lack of faithfulness. Second, the generated scene graphs have high inconsistency, with the same semantics represented by different annotations. To address these challenges, we propose a novel dataset, which involves re-annotating the captions in Visual Genome (VG) using a new intermediate representation called FACTUAL-MR. FACTUAL-MR can be directly converted into faithful and consistent scene graph annotations. Our experimental results clearly demonstrate that the parser trained on our dataset outperforms existing approaches in terms of faithfulness and consistency. This improvement leads to a significant performance boost in both image caption evaluation and zero-shot image retrieval tasks. Furthermore, we introduce a novel metric for measuring scene graph similarity, which, when combined with the improved scene graph parser, achieves state-of-the-art (SOTA) results on multiple benchmark datasets for the aforementioned tasks.
We introduce DocTime - a novel temporal dependency graph (TDG) parser that takes as input a text document and produces a temporal dependency graph. It outperforms previous BERT-based solutions by a relative 4-8% on three datasets from modeling the problem as a graph network with path-prediction loss to incorporate longer range dependencies. This work also demonstrates how the TDG graph can be used to improve the downstream tasks of temporal questions answering and NLI by a relative 4-10% with a new framework that incorporates the temporal dependency graph into the self-attention layer of Transformer models (Time-transformer). Finally, we develop and evaluate on a new temporal dependency graph dataset for the domain of contractual documents, which has not been previously explored in this setting.
Toxic span detection is the task of recognizing offensive spans in a text snippet. Although there has been prior work on classifying text snippets as offensive or not, the task of recognizing spans responsible for the toxicity of a text is not explored yet. In this work, we introduce a novel multi-task framework for toxic span detection in which the model seeks to simultaneously predict offensive words and opinion phrases to leverage their inter-dependencies and improve the performance. Moreover, we introduce a novel regularization mechanism to encourage the consistency of the model predictions across similar inputs for toxic span detection. Our extensive experiments demonstrate the effectiveness of the proposed model compared to strong baselines.
Individuals, educational institutions, and businesses are prolific at generating instructional video content such as “how-to” and tutorial guides. While significant progress has been made in basic video understanding tasks, identifying procedural intent within these instructional videos is a challenging and important task that remains unexplored but essential to video summarization, search, and recommendations. This paper introduces the problem of instructional intent identification and extraction from software instructional livestreams. We construct and present a new multimodal dataset consisting of software instructional livestreams and containing manual annotations for both detailed and abstract procedural intent that enable training and evaluation of joint video and text understanding models. We then introduce a multimodal cascaded cross-attention model to efficiently combine the weaker and noisier video signal with the more discriminative text signal. Our experiments show that our proposed model brings significant gains compared to strong baselines, including large-scale pretrained multimodal models. Our analysis further identifies that the task benefits from spatial as well as motion features extracted from videos, and provides insight on how the video signal is preferentially used for intent discovery. We also show that current models struggle to comprehend the nature of abstract intents, revealing important gaps in multimodal understanding and paving the way for future work.
Keyphrase Prediction (KP) is an established NLP task, aiming to yield representative phrases to summarize the main content of a given document. Despite major progress in recent years, existing works on KP have mainly focused on formal texts such as scientific papers or weblogs. The challenges of KP in informal-text domains are not yet fully studied. To this end, this work studies new challenges of KP in transcripts of videos, an understudied domain for KP that involves informal texts and non-cohesive presentation styles. A bottleneck for KP research in this domain involves the lack of high-quality and large-scale annotated data that hinders the development of advanced KP models. To address this issue, we introduce a large-scale manually-annotated KP dataset in the domain of live-stream video transcripts obtained by automatic speech recognition tools. Concretely, transcripts of 500+ hours of videos streamed on the behance.net platform are manually labeled with important keyphrases. Our analysis of the dataset reveals the challenging nature of KP in transcripts. Moreover, for the first time in KP, we demonstrate the idea of improving KP for long documents (i.e., transcripts) by feeding models with paragraph-level keyphrases, i.e., hierarchical extraction. To foster future research, we will publicly release the dataset and code.
Compared to the general news domain, information extraction (IE) from biomedical text requires much broader domain knowledge. However, many previous IE methods do not utilize any external knowledge during inference. Due to the exponential growth of biomedical publications, models that do not go beyond their fixed set of parameters will likely fall behind. Inspired by how humans look up relevant information to comprehend a scientific text, we present a novel framework that utilizes external knowledge for joint entity and relation extraction named KECI (Knowledge-Enhanced Collective Inference). Given an input text, KECI first constructs an initial span graph representing its initial understanding of the text. It then uses an entity linker to form a knowledge graph containing relevant background knowledge for the the entity mentions in the text. To make the final predictions, KECI fuses the initial span graph and the knowledge graph into a more refined graph using an attention mechanism. KECI takes a collective approach to link mention spans to entities by integrating global relational information into local representations using graph convolutional networks. Our experimental results show that the framework is highly effective, achieving new state-of-the-art results in two different benchmark datasets: BioRelEx (binding interaction detection) and ADE (adverse drug event extraction). For example, KECI achieves absolute improvements of 4.59% and 4.91% in F1 scores over the state-of-the-art on the BioRelEx entity and relation extraction tasks
We present TIMERS - a TIME, Rhetorical and Syntactic-aware model for document-level temporal relation classification in the English language. Our proposed method leverages rhetorical discourse features and temporal arguments from semantic role labels, in addition to traditional local syntactic features, trained through a Gated Relational-GCN. Extensive experiments show that the proposed model outperforms previous methods by 5-18% on the TDDiscourse, TimeBank-Dense, and MATRES datasets due to our discourse-level modeling.
Event coreference resolution is an important research problem with many applications. Despite the recent remarkable success of pre-trained language models, we argue that it is still highly beneficial to utilize symbolic features for the task. However, as the input for coreference resolution typically comes from upstream components in the information extraction pipeline, the automatically extracted symbolic features can be noisy and contain errors. Also, depending on the specific context, some features can be more informative than others. Motivated by these observations, we propose a novel context-dependent gated module to adaptively control the information flows from the input symbolic features. Combined with a simple noisy training method, our best models achieve state-of-the-art results on two datasets: ACE 2005 and KBP 2016.
In this work, we focus on a more challenging few-shot intent detection scenario where many intents are fine-grained and semantically similar. We present a simple yet effective few-shot intent detection schema via contrastive pre-training and fine-tuning. Specifically, we first conduct self-supervised contrastive pre-training on collected intent datasets, which implicitly learns to discriminate semantically similar utterances without using any labels. We then perform few-shot intent detection together with supervised contrastive learning, which explicitly pulls utterances from the same intent closer and pushes utterances across different intents farther. Experimental results show that our proposed method achieves state-of-the-art performance on three challenging intent detection datasets under 5-shot and 10-shot settings.
Keyphrase extraction is the task of extracting a small set of phrases that best describe a document. Most existing benchmark datasets for the task typically have limited numbers of annotated documents, making it challenging to train increasingly complex neural networks. In contrast, digital libraries store millions of scientific articles online, covering a wide range of topics. While a significant portion of these articles contain keyphrases provided by their authors, most other articles lack such kind of annotations. Therefore, to effectively utilize these large amounts of unlabeled articles, we propose a simple and efficient joint learning approach based on the idea of self-distillation. Experimental results show that our approach consistently improves the performance of baseline models for keyphrase extraction. Furthermore, our best models outperform previous methods for the task, achieving new state-of-the-art results on two public benchmarks: Inspec and SemEval-2017.
Acronyms are the short forms of phrases that facilitate conveying lengthy sentences in documents and serve as one of the mainstays of writing. Due to their importance, identifying acronyms and corresponding phrases (i.e., acronym identification (AI)) and finding the correct meaning of each acronym (i.e., acronym disambiguation (AD)) are crucial for text understanding. Despite the recent progress on this task, there are some limitations in the existing datasets which hinder further improvement. More specifically, limited size of manually annotated AI datasets or noises in the automatically created acronym identification datasets obstruct designing advanced high-performing acronym identification models. Moreover, the existing datasets are mostly limited to the medical domain and ignore other domains. In order to address these two limitations, we first create a manually annotated large AI dataset for scientific domain. This dataset contains 17,506 sentences which is substantially larger than previous scientific AI datasets. Next, we prepare an AD dataset for scientific domain with 62,441 samples which is significantly larger than previous scientific AD dataset. Our experiments show that the existing state-of-the-art models fall far behind human-level performance on both datasets proposed by this work. In addition, we propose a new deep learning model which utilizes the syntactical structure of the sentence to expand an ambiguous acronym in a sentence. The proposed model outperforms the state-of-the-art models on the new AD dataset, providing a strong baseline for future research on this dataset.
Interpretability and explainability of deep neural net models are always challenging due to their size and complexity. Many previous works focused on visualizing internal components of neural networks to represent them through human-friendly concepts. On the other hand, in real life, when making a decision, human tends to rely on similar situations in the past. Thus, we argue that one potential approach to make the model interpretable and explainable is to design it in a way such that the model explicitly connects the current sample with the seen samples, and bases its decision on these samples. In this work, we design one such model: an explainable, evidence-based memory network architecture, which learns to summarize the dataset and extract supporting evidences to make its decision. The model achieves state-of-the-art performance on two popular question answering datasets, the TrecQA dataset and the WikiQA dataset. Via further analysis, we showed that this model can reliably trace the errors it has made in the validation step to the training instances that might have caused this error. We believe that this error-tracing capability might be beneficial in improving dataset quality in many applications.
Attention mechanisms have improved the performance of NLP tasks while allowing models to remain explainable. Self-attention is currently widely used, however interpretability is difficult due to the numerous attention distributions. Recent work has shown that model representations can benefit from label-specific information, while facilitating interpretation of predictions. We introduce the Label Attention Layer: a new form of self-attention where attention heads represent labels. We test our novel layer by running constituency and dependency parsing experiments and show our new model obtains new state-of-the-art results for both tasks on both the Penn Treebank (PTB) and Chinese Treebank. Additionally, our model requires fewer self-attention layers compared to existing work. Finally, we find that the Label Attention heads learn relations between syntactic categories and show pathways to analyze errors.
Structured representations like graphs and parse trees play a crucial role in many Natural Language Processing systems. In recent years, the advancements in multi-turn user interfaces necessitate the need for controlling and updating these structured representations given new sources of information. Although there have been many efforts focusing on improving the performance of the parsers that map text to graphs or parse trees, very few have explored the problem of directly manipulating these representations. In this paper, we explore the novel problem of graph modification, where the systems need to learn how to update an existing scene graph given a new user’s command. Our novel models based on graph-based sparse transformer and cross attention information fusion outperform previous systems adapted from the machine translation and graph generation literature. We further contribute our large graph modification datasets to the research community to encourage future research for this new problem.
Aspect-based Sentiment Analysis (ABSA) seeks to predict the sentiment polarity of a sentence toward a specific aspect. Recently, it has been shown that dependency trees can be integrated into deep learning models to produce the state-of-the-art performance for ABSA. However, these models tend to compute the hidden/representation vectors without considering the aspect terms and fail to benefit from the overall contextual importance scores of the words that can be obtained from the dependency tree for ABSA. In this work, we propose a novel graph-based deep learning model to overcome these two issues of the prior work on ABSA. In our model, gate vectors are generated from the representation vectors of the aspect terms to customize the hidden vectors of the graph-based models toward the aspect terms. In addition, we propose a mechanism to obtain the importance scores for each word in the sentences based on the dependency trees that are then injected into the model to improve the representation vectors for ABSA. The proposed model achieves the state-of-the-art performance on three benchmark datasets.
Answer selection is an important research problem, with applications in many areas. Previous deep learning based approaches for the task mainly adopt the Compare-Aggregate architecture that performs word-level comparison followed by aggregation. In this work, we take a departure from the popular Compare-Aggregate architecture, and instead, propose a new gated self-attention memory network for the task. Combined with a simple transfer learning technique from a large-scale online corpus, our model outperforms previous methods by a large margin, achieving new state-of-the-art results on two standard answer selection datasets: TrecQA and WikiQA.
In spite of the recent success of Dialogue Act (DA) classification, the majority of prior works focus on text-based classification with oracle transcriptions, i.e. human transcriptions, instead of Automatic Speech Recognition (ASR)’s transcriptions. In spoken dialog systems, however, the agent would only have access to noisy ASR transcriptions, which may further suffer performance degradation due to domain shift. In this paper, we explore the effectiveness of using both acoustic and textual signals, either oracle or ASR transcriptions, and investigate speaker domain adaptation for DA classification. Our multimodal model proves to be superior to the unimodal models, particularly when the oracle transcriptions are not available. We also propose an effective method for speaker domain adaptation, which achieves competitive results.
Contextual sequence mapping is one of the fundamental problems in Natural Language Processing (NLP). Here, instead of relying solely on the information presented in the text, the learning agents have access to a strong external signal given to assist the learning process. In this paper, we propose a novel family of Recurrent Neural Network unit: the Context-dependent Additive Recurrent Neural Network (CARNN) that is designed specifically to address this type of problem. The experimental results on public datasets in the dialog problem (Babi dialog Task 6 and Frame), contextual language model (Switchboard and Penn Tree Bank) and question answering (Trec QA) show that our novel CARNN-based architectures outperform previous methods.
Recurrent Neural Network models are the state-of-the-art for Named Entity Recognition (NER). We present two innovations to improve the performance of these models. The first innovation is the introduction of residual connections between the Stacked Recurrent Neural Network model to address the degradation problem of deep neural networks. The second innovation is a bias decoding mechanism that allows the trained system to adapt to non-differentiable and externally computed objectives, such as the entity-based F-measure. Our work improves the state-of-the-art results for both Spanish and English languages on the standard train/development/test split of the CoNLL 2003 Shared Task NER dataset.
This paper introduces a novel training/decoding strategy for sequence labeling. Instead of greedily choosing a label at each time step, and using it for the next prediction, we retain the probability distribution over the current label, and pass this distribution to the next prediction. This approach allows us to avoid the effect of label bias and error propagation in sequence learning/decoding. Our experiments on dialogue act classification demonstrate the effectiveness of this approach. Even though our underlying neural network model is relatively simple, it outperforms more complex neural models, achieving state-of-the-art results on the MapTask and Switchboard corpora.
We propose a novel hierarchical Recurrent Neural Network (RNN) for learning sequences of Dialogue Acts (DAs). The input in this task is a sequence of utterances (i.e., conversational contributions) comprising a sequence of tokens, and the output is a sequence of DA labels (one label per utterance). Our model leverages the hierarchical nature of dialogue data by using two nested RNNs that capture long-range dependencies at the dialogue level and the utterance level. This model is combined with an attention mechanism that focuses on salient tokens in utterances. Our experimental results show that our model outperforms strong baselines on two popular datasets, Switchboard and MapTask; and our detailed empirical analysis highlights the impact of each aspect of our model.
We propose a novel generative neural network architecture for Dialogue Act classification. Building upon the Recurrent Neural Network framework, our model incorporates a novel attentional technique and a label to label connection for sequence learning, akin to Hidden Markov Models. The experiments show that both of these innovations lead our model to outperform strong baselines for dialogue act classification on MapTask and Switchboard corpora. We further empirically analyse the effectiveness of each of the new innovations.