Priyanka Dey


2023

pdf
Investigating Stylistic Profiles for the Task of Empathy Classification in Medical Narrative Essays
Priyanka Dey | Roxana Girju
Proceedings of the First International Workshop on Construction Grammars and NLP (CxGs+NLP, GURT/SyntaxFest 2023)

One important aspect of language is how speakers generate utterances and texts to convey their intended meanings. In this paper, we bring various aspects of the Construction Grammar (CxG) and the Systemic Functional Grammar (SFG) theories in a deep learning computational framework to model empathic language. Our corpus consists of 440 essays written by premed students as narrated simulated patient–doctor interactions. We start with baseline classifiers (state-of-the-art recurrent neural networks and transformer models). Then, we enrich these models with a set of linguistic constructions proving the importance of this novel approach to the task of empathy classification for this dataset. Our results indicate the potential of such constructions to contribute to the overall empathy profile of first-person narrative essays.

2022

pdf
Enriching Deep Learning with Frame Semantics for Empathy Classification in Medical Narrative Essays
Priyanka Dey | Roxana Girju
Proceedings of the 13th International Workshop on Health Text Mining and Information Analysis (LOUHI)

Empathy is a vital component of health care and plays a key role in the training of future doctors. Paying attention to medical students’ self-reflective stories of their interactions with patients can encourage empathy and the formation of professional identities that embody desirable values such as integrity and respect. We present a computational approach and linguistic analysis of empathic language in a large corpus of 440 essays written by pre-med students as narrated simulated patient – doctor interactions. We analyze the discourse of three kinds of empathy: cognitive, affective, and prosocial as highlighted by expert annotators. We also present various experiments with state-of-the-art recurrent neural networks and transformer models for classifying these forms of empathy. To further improve over these results, we develop a novel system architecture that makes use of frame semantics to enrich our state-of-the-art models. We show that this novel framework leads to significant improvement on the empathy classification task for this dataset.