Pritika Ramu


2024

pdf
Zooming in on Zero-Shot Intent-Guided and Grounded Document Generation using LLMs
Pritika Ramu | Pranshu Gaur | Rishita Emandi | Himanshu Maheshwari | Danish Javed | Aparna Garimella
Proceedings of the 17th International Natural Language Generation Conference

Repurposing existing content on-the-fly to suit author’s goals for creating initial drafts is crucial for document creation. We introduce the task of intent-guided and grounded document generation: given a user-specified intent (e.g., section title) and a few reference documents, the goal is to generate section-level multimodal documents spanning text and images, grounded on the given references, in a zero-shot setting. We present a data curation strategy to obtain general-domain samples from Wikipedia, and collect 1,000 Wikipedia sections consisting of textual and image content along with appropriate intent specifications and references. We propose a simple yet effective planning-based prompting strategy, Multimodal Plan-And-Write (MM-PAW), to prompt LLMs to generate an intermediate plan with text and image descriptions, to guide the subsequent generation. We compare the performances of MM-PAW and a text-only variant of it with those of zero-shot Chain-of-Thought (CoT) using recent close and open-domain LLMs. Both of them lead to significantly better performances in terms of content relevance, structure, and groundedness to the references, more so in the smaller models (upto 12.5 points increase in Rouge 1-F1) than in the larger ones (upto 4 points increase in R1-F1). They are particularly effective in improving relatively smaller models’ performances, to be on par or higher than those of their larger counterparts for this task.

pdf
RE2: Region-Aware Relation Extraction from Visually Rich Documents
Pritika Ramu | Sijia Wang | Lalla Mouatadid | Joy Rimchala | Lifu Huang
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Current research in form understanding predominantly relies on large pre-trained language models, necessitating extensive data for pre-training. However, the importance of layout structure (i.e., the spatial relationship between the entity blocks in the visually rich document) to relation extraction has been overlooked. In this paper, we propose REgion-Aware Relation Extraction (\bf{RE^2}) that leverages region-level spatial structure among the entity blocks to improve their relation prediction. We design an edge-aware graph attention network to learn the interaction between entities while considering their spatial relationship defined by their region-level representations. We also introduce a constraint objective to regularize the model towards consistency with the inherent constraints of the relation extraction task. To support the research on relation extraction from visually rich documents and demonstrate the generalizability of \bf{RE^2}, we build a new benchmark dataset, DiverseForm, that covers a wide range of domains. Extensive experiments on DiverseForm and several public benchmark datasets demonstrate significant superiority and transferability of \bf{RE^2} across various domains and languages, with up to 18.88% absolute F-score gain over all high-performing baselines