Nikos Papasarantopoulos


2023

pdf
FastRAT: Fast and Efficient Cross-lingual Text-to-SQL Semantic Parsing
Pavlos Vougiouklis | Nikos Papasarantopoulos | Danna Zheng | David Tuckey | Chenxin Diao | Zhili Shen | Jeff Pan
Proceedings of the 13th International Joint Conference on Natural Language Processing and the 3rd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics (Volume 1: Long Papers)

pdf
Retrieval Augmented Generation with Rich Answer Encoding
Wenyu Huang | Mirella Lapata | Pavlos Vougiouklis | Nikos Papasarantopoulos | Jeff Pan
Proceedings of the 13th International Joint Conference on Natural Language Processing and the 3rd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics (Volume 1: Long Papers)

2019

pdf
Partners in Crime: Multi-view Sequential Inference for Movie Understanding
Nikos Papasarantopoulos | Lea Frermann | Mirella Lapata | Shay B. Cohen
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Multi-view learning algorithms are powerful representation learning tools, often exploited in the context of multimodal problems. However, for problems requiring inference at the token-level of a sequence (that is, a separate prediction must be made for every time step), it is often the case that single-view systems are used, or that more than one views are fused in a simple manner. We describe an incremental neural architecture paired with a novel training objective for incremental inference. The network operates on multi-view data. We demonstrate the effectiveness of our approach on the problem of predicting perpetrators in crime drama series, for which our model significantly outperforms previous work and strong baselines. Moreover, we introduce two tasks, crime case and speaker type tagging, that contribute to movie understanding and demonstrate the effectiveness of our model on them.

2018

pdf
Document Modeling with External Attention for Sentence Extraction
Shashi Narayan | Ronald Cardenas | Nikos Papasarantopoulos | Shay B. Cohen | Mirella Lapata | Jiangsheng Yu | Yi Chang
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Document modeling is essential to a variety of natural language understanding tasks. We propose to use external information to improve document modeling for problems that can be framed as sentence extraction. We develop a framework composed of a hierarchical document encoder and an attention-based extractor with attention over external information. We evaluate our model on extractive document summarization (where the external information is image captions and the title of the document) and answer selection (where the external information is a question). We show that our model consistently outperforms strong baselines, in terms of both informativeness and fluency (for CNN document summarization) and achieves state-of-the-art results for answer selection on WikiQA and NewsQA.

2017

pdf
The SUMMA Platform Prototype
Renars Liepins | Ulrich Germann | Guntis Barzdins | Alexandra Birch | Steve Renals | Susanne Weber | Peggy van der Kreeft | Hervé Bourlard | João Prieto | Ondřej Klejch | Peter Bell | Alexandros Lazaridis | Alfonso Mendes | Sebastian Riedel | Mariana S. C. Almeida | Pedro Balage | Shay B. Cohen | Tomasz Dwojak | Philip N. Garner | Andreas Giefer | Marcin Junczys-Dowmunt | Hina Imran | David Nogueira | Ahmed Ali | Sebastião Miranda | Andrei Popescu-Belis | Lesly Miculicich Werlen | Nikos Papasarantopoulos | Abiola Obamuyide | Clive Jones | Fahim Dalvi | Andreas Vlachos | Yang Wang | Sibo Tong | Rico Sennrich | Nikolaos Pappas | Shashi Narayan | Marco Damonte | Nadir Durrani | Sameer Khurana | Ahmed Abdelali | Hassan Sajjad | Stephan Vogel | David Sheppey | Chris Hernon | Jeff Mitchell
Proceedings of the Software Demonstrations of the 15th Conference of the European Chapter of the Association for Computational Linguistics

We present the first prototype of the SUMMA Platform: an integrated platform for multilingual media monitoring. The platform contains a rich suite of low-level and high-level natural language processing technologies: automatic speech recognition of broadcast media, machine translation, automated tagging and classification of named entities, semantic parsing to detect relationships between entities, and automatic construction / augmentation of factual knowledge bases. Implemented on the Docker platform, it can easily be deployed, customised, and scaled to large volumes of incoming media streams.