Minghao Li


2024

pdf
Tree-Instruct: A Preliminary Study of the Intrinsic Relationship between Complexity and Alignment
Yingxiu Zhao | Bowen Yu | Binyuan Hui | Haiyang Yu | Minghao Li | Fei Huang | Nevin L. Zhang | Yongbin Li
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Training large language models (LLMs) with open-domain instruction data has yielded remarkable success in aligning to end tasks and human preferences. Extensive research has highlighted the importance of the quality and diversity of instruction data. However, the impact of data complexity, as a crucial metric, remains relatively unexplored from three aspects: (1)where the sustainability of performance improvements with increasing complexity is uncertain; (2)whether the improvement brought by complexity merely comes from introducing more training tokens; and (3)where the potential benefits of incorporating instructions from easy to difficult are not yet fully understood. In this paper, we propose Tree-Instruct to systematically enhance the instruction complexity in a controllable manner. By adding a specified number of nodes to instructions’ semantic trees, this approach not only yields new instruction data from the modified tree but also allows us to control the difficulty level of modified instructions. Our preliminary experiments reveal the following insights: (1)Increasing complexity consistently leads to sustained performance improvements of LLMs. (2)Under the same token budget, a few complex instructions outperform diverse yet simple instructions. (3)Curriculum instruction tuning might not yield the anticipated results; focusing on increasing complexity appears to be the key.

2023

pdf
API-Bank: A Comprehensive Benchmark for Tool-Augmented LLMs
Minghao Li | Yingxiu Zhao | Bowen Yu | Feifan Song | Hangyu Li | Haiyang Yu | Zhoujun Li | Fei Huang | Yongbin Li
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Recent research has demonstrated that Large Language Models (LLMs) can enhance their capabilities by utilizing external tools. However, three pivotal questions remain unanswered: (1) How effective are current LLMs in utilizing tools? (2) How can we enhance LLMs’ ability to utilize tools? (3) What obstacles need to be overcome to leverage tools? To address these questions, we introduce API-Bank, a groundbreaking benchmark, specifically designed for tool-augmented LLMs. For the first question, we develop a runnable evaluation system consisting of 73 API tools. We annotate 314 tool-use dialogues with 753 API calls to assess the existing LLMs’ capabilities in planning, retrieving, and calling APIs. For the second question, we construct a comprehensive training set containing 1,888 tool-use dialogues from 2,138 APIs spanning 1,000 distinct domains. Using this dataset, we train Lynx, a tool-augmented LLM initialized from Alpaca. Experimental results demonstrate that GPT-3.5 exhibits improved tool utilization compared to GPT-3, while GPT-4 excels in planning. However, there is still significant potential for further improvement. Moreover, Lynx surpasses Alpaca’s tool utilization performance by more than 26 pts and approaches the effectiveness of GPT-3.5. Through error analysis, we highlight the key challenges for future research in this field to answer the third question.

2020

pdf
DocBank: A Benchmark Dataset for Document Layout Analysis
Minghao Li | Yiheng Xu | Lei Cui | Shaohan Huang | Furu Wei | Zhoujun Li | Ming Zhou
Proceedings of the 28th International Conference on Computational Linguistics

Document layout analysis usually relies on computer vision models to understand documents while ignoring textual information that is vital to capture. Meanwhile, high quality labeled datasets with both visual and textual information are still insufficient. In this paper, we present DocBank, a benchmark dataset that contains 500K document pages with fine-grained token-level annotations for document layout analysis. DocBank is constructed using a simple yet effective way with weak supervision from the LaTeX documents available on the arXiv.com. With DocBank, models from different modalities can be compared fairly and multi-modal approaches will be further investigated and boost the performance of document layout analysis. We build several strong baselines and manually split train/dev/test sets for evaluation. Experiment results show that models trained on DocBank accurately recognize the layout information for a variety of documents. The DocBank dataset is publicly available at https://github.com/doc-analysis/DocBank.

pdf
TableBank: Table Benchmark for Image-based Table Detection and Recognition
Minghao Li | Lei Cui | Shaohan Huang | Furu Wei | Ming Zhou | Zhoujun Li
Proceedings of the Twelfth Language Resources and Evaluation Conference

We present TableBank, a new image-based table detection and recognition dataset built with novel weak supervision from Word and Latex documents on the internet. Existing research for image-based table detection and recognition usually fine-tunes pre-trained models on out-of-domain data with a few thousand human-labeled examples, which is difficult to generalize on real-world applications. With TableBank that contains 417K high quality labeled tables, we build several strong baselines using state-of-the-art models with deep neural networks. We make TableBank publicly available and hope it will empower more deep learning approaches in the table detection and recognition task. The dataset and models can be downloaded from https://github.com/doc-analysis/TableBank.