Milind Agarwal


2024

pdf
A Concise Survey of OCR for Low-Resource Languages
Milind Agarwal | Antonios Anastasopoulos
Proceedings of the 4th Workshop on Natural Language Processing for Indigenous Languages of the Americas (AmericasNLP 2024)

Modern natural language processing (NLP) techniques increasingly require substantial amounts of data to train robust algorithms. Building such technologies for low-resource languages requires focusing on data creation efforts and data-efficient algorithms. For a large number of low-resource languages, especially Indigenous languages of the Americas, this data exists in image-based non-machine-readable documents. This includes scanned copies of comprehensive dictionaries, linguistic field notes, children’s stories, and other textual material. To digitize these resources, Optical Character Recognition (OCR) has played a major role but it comes with certain challenges in low-resource settings. In this paper, we share the first survey of OCR techniques specific to low-resource data creation settings and outline several open challenges, with a special focus on Indigenous Languages of the Americas. Based on experiences and results from previous research, we conclude with recommendations on utilizing and improving OCR for the benefit of computational researchers, linguists, and language communities.

2023

pdf bib
FINDINGS OF THE IWSLT 2023 EVALUATION CAMPAIGN
Milind Agarwal | Sweta Agrawal | Antonios Anastasopoulos | Luisa Bentivogli | Ondřej Bojar | Claudia Borg | Marine Carpuat | Roldano Cattoni | Mauro Cettolo | Mingda Chen | William Chen | Khalid Choukri | Alexandra Chronopoulou | Anna Currey | Thierry Declerck | Qianqian Dong | Kevin Duh | Yannick Estève | Marcello Federico | Souhir Gahbiche | Barry Haddow | Benjamin Hsu | Phu Mon Htut | Hirofumi Inaguma | Dávid Javorský | John Judge | Yasumasa Kano | Tom Ko | Rishu Kumar | Pengwei Li | Xutai Ma | Prashant Mathur | Evgeny Matusov | Paul McNamee | John P. McCrae | Kenton Murray | Maria Nadejde | Satoshi Nakamura | Matteo Negri | Ha Nguyen | Jan Niehues | Xing Niu | Atul Kr. Ojha | John E. Ortega | Proyag Pal | Juan Pino | Lonneke van der Plas | Peter Polák | Elijah Rippeth | Elizabeth Salesky | Jiatong Shi | Matthias Sperber | Sebastian Stüker | Katsuhito Sudoh | Yun Tang | Brian Thompson | Kevin Tran | Marco Turchi | Alex Waibel | Mingxuan Wang | Shinji Watanabe | Rodolfo Zevallos
Proceedings of the 20th International Conference on Spoken Language Translation (IWSLT 2023)

This paper reports on the shared tasks organized by the 20th IWSLT Conference. The shared tasks address 9 scientific challenges in spoken language translation: simultaneous and offline translation, automatic subtitling and dubbing, speech-to-speech translation, multilingual, dialect and low-resource speech translation, and formality control. The shared tasks attracted a total of 38 submissions by 31 teams. The growing interest towards spoken language translation is also witnessed by the constantly increasing number of shared task organizers and contributors to the overview paper, almost evenly distributed across industry and academia.

pdf
LIMIT: Language Identification, Misidentification, and Translation using Hierarchical Models in 350+ Languages
Milind Agarwal | Md Mahfuz Ibn Alam | Antonios Anastasopoulos
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Knowing the language of an input text/audio is a necessary first step for using almost every NLP tool such as taggers, parsers, or translation systems. Language identification is a well-studied problem, sometimes even considered solved; in reality, due to lack of data and computational challenges, current systems cannot accurately identify most of the world’s 7000 languages. To tackle this bottleneck, we first compile a corpus, MCS-350, of 50K multilingual and parallel children’s stories in 350+ languages. MCS-350 can serve as a benchmark for language identification of short texts and for 1400+ new translation directions in low-resource Indian and African languages. Second, we propose a novel misprediction-resolution hierarchical model, LIMIT, for language identification that reduces error by 55% (from 0.71 to 0.32) on our compiled children’s stories dataset and by 40% (from 0.23 to 0.14) on the FLORES-200 benchmark. Our method can expand language identification coverage into low-resource languages by relying solely on systemic misprediction patterns, bypassing the need to retrain large models from scratch.

pdf
The SIGMORPHON 2022 Shared Task on Cross-lingual and Low-Resource Grapheme-to-Phoneme Conversion
Arya D. McCarthy | Jackson L. Lee | Alexandra DeLucia | Travis Bartley | Milind Agarwal | Lucas F.E. Ashby | Luca Del Signore | Cameron Gibson | Reuben Raff | Winston Wu
Proceedings of the 20th SIGMORPHON workshop on Computational Research in Phonetics, Phonology, and Morphology

Grapheme-to-phoneme conversion is an important component in many speech technologies, but until recently there were no multilingual benchmarks for this task. The third iteration of the SIGMORPHON shared task on multilingual grapheme-to-phoneme conversion features many improvements from the previous year’s task (Ashby et al., 2021), including additional languages, three subtasks varying the amount of available resources, extensive quality assurance procedures, and automated error analyses. Three teams submitted a total of fifteen systems, at best achieving relative reductions of word error rate of 14% in the crosslingual subtask and 14% in the very-low resource subtask. The generally consistent result is that cross-lingual transfer substantially helps grapheme-to-phoneme modeling, but not to the same degree as in-language examples.

pdf
PALI: A Language Identification Benchmark for Perso-Arabic Scripts
Sina Ahmadi | Milind Agarwal | Antonios Anastasopoulos
Tenth Workshop on NLP for Similar Languages, Varieties and Dialects (VarDial 2023)

The Perso-Arabic scripts are a family of scripts that are widely adopted and used by various linguistic communities around the globe. Identifying various languages using such scripts is crucial to language technologies and challenging in low-resource setups. As such, this paper sheds light on the challenges of detecting languages using Perso-Arabic scripts, especially in bilingual communities where “unconventional” writing is practiced. To address this, we use a set of supervised techniques to classify sentences into their languages. Building on these, we also propose a hierarchical model that targets clusters of languages that are more often confused by the classifiers. Our experiment results indicate the effectiveness of our solutions.

2020

pdf
Collecting Verified COVID-19 Question Answer Pairs
Adam Poliak | Max Fleming | Cash Costello | Kenton Murray | Mahsa Yarmohammadi | Shivani Pandya | Darius Irani | Milind Agarwal | Udit Sharma | Shuo Sun | Nicola Ivanov | Lingxi Shang | Kaushik Srinivasan | Seolhwa Lee | Xu Han | Smisha Agarwal | João Sedoc
Proceedings of the 1st Workshop on NLP for COVID-19 (Part 2) at EMNLP 2020

We release a dataset of over 2,100 COVID19 related Frequently asked Question-Answer pairs scraped from over 40 trusted websites. We include an additional 24, 000 questions pulled from online sources that have been aligned by experts with existing answered questions from our dataset. This paper describes our efforts in collecting the dataset and summarizes the resulting data. Our dataset is automatically updated daily and available at https://github.com/JHU-COVID-QA/ scraping-qas. So far, this data has been used to develop a chatbot providing users information about COVID-19. We encourage others to build analytics and tools upon this dataset as well.