Mikhail Plekhanov


2023

pdf
Polar Ducks and Where to Find Them: Enhancing Entity Linking with Duck Typing and Polar Box Embeddings
Mattia Atzeni | Mikhail Plekhanov | Frederic Dreyer | Nora Kassner | Simone Merello | Louis Martin | Nicola Cancedda
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Entity linking methods based on dense retrieval are widely adopted in large-scale applications for their efficiency, but they can fall short of generative models, as they are sensitive to the structure of the embedding space. To address this issue, this paper introduces DUCK, an approach to infusing structural information in the space of entity representations, using prior knowledge of entity types. Inspired by duck typing in programming languages, we define the type of an entity based on its relations with other entities in a knowledge graph. Then, porting the concept of box embeddings to spherical polar coordinates, we represent relations as boxes on the hypersphere. We optimize the model to place entities inside the boxes corresponding to their relations, thereby clustering together entities of similar type. Our experiments show that our method sets new state-of-the-art results on standard entity-disambiguation benchmarks. It improves the performance of the model by up to 7.9 F1 points, outperforms other type-aware approaches, and matches the results of generative models with 18 times more parameters.

2022

pdf
EDIN: An End-to-end Benchmark and Pipeline for Unknown Entity Discovery and Indexing
Nora Kassner | Fabio Petroni | Mikhail Plekhanov | Sebastian Riedel | Nicola Cancedda
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Existing work on Entity Linking mostly assumes that the reference knowledge base is complete, and therefore all mentions can be linked. In practice this is hardly ever the case, as knowledge bases are incomplete and because novel concepts arise constantly. We introduce the temporally segmented Unknown Entity Discovery and Indexing (EDIN)-benchmark where unknown entities, that is entities not part of the knowledge base and without descriptions and labeled mentions, have to be integrated into an existing entity linking system. By contrasting EDIN with zero-shot entity linking, we provide insight on the additional challenges it poses. Building on dense-retrieval based entity linking, we introduce the end-to-end EDIN-pipeline that detects, clusters, and indexes mentions of unknown entities in context. Experiments show that indexing a single embedding per entity unifying the information of multiple mentions works better than indexing mentions independently.

pdf
Multilingual Autoregressive Entity Linking
Nicola De Cao | Ledell Wu | Kashyap Popat | Mikel Artetxe | Naman Goyal | Mikhail Plekhanov | Luke Zettlemoyer | Nicola Cancedda | Sebastian Riedel | Fabio Petroni
Transactions of the Association for Computational Linguistics, Volume 10

We present mGENRE, a sequence-to- sequence system for the Multilingual Entity Linking (MEL) problem—the task of resolving language-specific mentions to a multilingual Knowledge Base (KB). For a mention in a given language, mGENRE predicts the name of the target entity left-to-right, token-by-token in an autoregressive fashion. The autoregressive formulation allows us to effectively cross-encode mention string and entity names to capture more interactions than the standard dot product between mention and entity vectors. It also enables fast search within a large KB even for mentions that do not appear in mention tables and with no need for large-scale vector indices. While prior MEL works use a single representation for each entity, we match against entity names of as many languages as possible, which allows exploiting language connections between source input and target name. Moreover, in a zero-shot setting on languages with no training data at all, mGENRE treats the target language as a latent variable that is marginalized at prediction time. This leads to over 50% improvements in average accuracy. We show the efficacy of our approach through extensive evaluation including experiments on three popular MEL benchmarks where we establish new state-of-the-art results. Source code available at https://github.com/facebookresearch/GENRE.