2023
pdf
abs
Can LMs Learn New Entities from Descriptions? Challenges in Propagating Injected Knowledge
Yasumasa Onoe
|
Michael Zhang
|
Shankar Padmanabhan
|
Greg Durrett
|
Eunsol Choi
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Pre-trained language models (LMs) are used for knowledge intensive tasks like question answering, but their knowledge gets continuously outdated as the world changes. Prior work has studied targeted updates to LMs, injecting individual facts and evaluating whether the model learns these facts while not changing predictions on other contexts. We take a step forward and study LMs’ abilities to make inferences based on injected facts (or propagate those facts): for example, after learning that something is a TV show, does an LM predict that you can watch it? We study this with two cloze-style tasks: an existing dataset of real-world sentences about novel entities (ECBD) as well as a new controlled benchmark with manually designed templates requiring varying levels of inference about injected knowledge. Surprisingly, we find that existing methods for updating knowledge (gradient-based fine-tuning and modifications of this approach) show little propagation of injected knowledge. These methods improve performance on cloze instances only when there is lexical overlap between injected facts and target inferences. Yet, prepending entity definitions in an LM’s context improves performance across all settings, suggesting that there is substantial headroom for parameter-updating approaches for knowledge injection.
pdf
abs
Selectively Answering Ambiguous Questions
Jeremy Cole
|
Michael Zhang
|
Daniel Gillick
|
Julian Eisenschlos
|
Bhuwan Dhingra
|
Jacob Eisenstein
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
Trustworthy language models should abstain from answering questions when they do not know the answer. However, the answer to a question can be unknown for a variety of reasons. Prior research has focused on the case in which the question is clear and the answer is unambiguous but possibly unknown. However, the answer to a question can also be unclear due to uncertainty of the questioner’s intent or context. We investigate question answering from this perspective, focusing on answering a subset of questions with a high degree of accuracy, from a set of questions in which many are inherently ambiguous. In this setting, we find that the most reliable approach to calibration involves quantifying repetition within a set of sampled model outputs, rather than the model’s likelihood or self-verification as used in prior work. We find this to be the case across different types of uncertainty, varying model scales and both with or without instruction tuning. Our results suggest that sampling-based confidence scores help calibrate answers to relatively unambiguous questions, with more dramatic improvements on ambiguous questions.
pdf
abs
Mitigating Temporal Misalignment by Discarding Outdated Facts
Michael Zhang
|
Eunsol Choi
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
While large language models are able to retain vast amounts of world knowledge seen during pretraining, such knowledge is prone to going out of date and is nontrivial to update. Furthermore, these models are often used under temporal misalignment, tasked with answering questions about the present, despite having only been trained on data collected in the past. To mitigate the effects of temporal misalignment, we propose fact duration prediction: the task of predicting how long a given fact will remain true. In our experiments, we demonstrate that identifying which facts are prone to rapid change can help models avoid reciting outdated information and determine which predictions require seeking out up-to-date knowledge sources. We also show how modeling fact duration improves calibration for knowledge-intensive tasks, such as open-retrieval question answering, under temporal misalignment, by discarding volatile facts.
2022
pdf
abs
Rich Knowledge Sources Bring Complex Knowledge Conflicts: Recalibrating Models to Reflect Conflicting Evidence
Hung-Ting Chen
|
Michael Zhang
|
Eunsol Choi
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing
Question answering models can use rich knowledge sources — up to one hundred retrieved passages and parametric knowledge in the large-scale language model (LM). Prior work assumes information in such knowledge sources is consistent with each other, paying little attention to how models blend information stored in their LM parameters with that from retrieved evidence documents. In this paper, we simulate knowledge conflicts (i.e., where parametric knowledge suggests one answer and different passages suggest different answers) and examine model behaviors. We find retrieval performance heavily impacts which sources models rely on, and current models mostly rely on non-parametric knowledgein their best-performing settings. We discover a troubling trend that contradictions among knowledge sources affect model confidence only marginally. To address this issue, we present a new calibration study, where models are discouraged from presenting any single answer when presented with multiple conflicting answer candidates in retrieved evidences.
pdf
abs
Entity Cloze By Date: What LMs Know About Unseen Entities
Yasumasa Onoe
|
Michael Zhang
|
Eunsol Choi
|
Greg Durrett
Findings of the Association for Computational Linguistics: NAACL 2022
Language models (LMs) are typically trained once on a large-scale corpus and used for years without being updated. However, in a dynamic world, new entities constantly arise. We propose a framework to analyze what LMs can infer about new entities that did not exist when the LMs were pretrained. We derive a dataset of entities indexed by their origination date and paired with their English Wikipedia articles, from which we can find sentences about each entity. We evaluate LMs’ perplexity on masked spans within these sentences. We show that models more informed about the entities, such as those with access to a textual definition of them, achieve lower perplexity on this benchmark. Our experimental results demonstrate that making inferences about new entities remains difficult for LMs. Given its wide coverage on entity knowledge and temporal indexing, our dataset can be used to evaluate LMs and techniques designed to modify or extend their knowledge. Our automatic data collection pipeline can be easily used to continually update our benchmark.
2021
pdf
abs
SituatedQA: Incorporating Extra-Linguistic Contexts into QA
Michael Zhang
|
Eunsol Choi
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing
Answers to the same question may change depending on the extra-linguistic contexts (when and where the question was asked). To study this challenge, we introduce SituatedQA, an open-retrieval QA dataset where systems must produce the correct answer to a question given the temporal or geographical context. To construct SituatedQA, we first identify such questions in existing QA datasets. We find that a significant proportion of information seeking questions have context-dependent answers (e.g. roughly 16.5% of NQ-Open). For such context-dependent questions, we then crowdsource alternative contexts and their corresponding answers. Our study shows that existing models struggle with producing answers that are frequently updated or from uncommon locations. We further quantify how existing models, which are trained on data collected in the past, fail to generalize to answering questions asked in the present, even when provided with an updated evidence corpus (a roughly 15 point drop in accuracy). Our analysis suggests that open-retrieval QA benchmarks should incorporate extra-linguistic context to stay relevant globally and in the future. Our data, code, and datasheet are available at
https://situatedqa.github.io/.
2020
pdf
abs
Document-level Neural MT: A Systematic Comparison
António Lopes
|
M. Amin Farajian
|
Rachel Bawden
|
Michael Zhang
|
André F. T. Martins
Proceedings of the 22nd Annual Conference of the European Association for Machine Translation
In this paper we provide a systematic comparison of existing and new document-level neural machine translation solutions. As part of this comparison, we introduce and evaluate a document-level variant of the recently proposed Star Transformer architecture. In addition to using the traditional metric BLEU, we report the accuracy of the models in handling anaphoric pronoun translation as well as coherence and cohesion using contrastive test sets. Finally, we report the results of human evaluation in terms of Multidimensional Quality Metrics (MQM) and analyse the correlation of the results obtained by the automatic metrics with human judgments.