This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we generate only three BibTeX files per volume, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
Controlled Text Generation (CTG) aims to produce texts that exhibit specific desired attributes. In this study, we introduce a pluggable CTG framework for Large Language Models (LLMs) named Dynamic Attribute Graphs-based controlled text generation (DATG). This framework utilizes an attribute scorer to evaluate the attributes of sentences generated by LLMs and constructs dynamic attribute graphs. DATG modulates the occurrence of key attribute words and key anti-attribute words, achieving effective attribute control without compromising the original capabilities of the model. We conduct experiments across four datasets in two tasks: toxicity mitigation and sentiment transformation, employing five LLMs as foundational models. Our findings highlight a remarkable enhancement in control accuracy, achieving a peak improvement of 19.29% over baseline methods in the most favorable task across four datasets. Additionally, we observe a significant decrease in perplexity, markedly improving text fluency.
The demand for understanding and expressing emotions in the field of natural language processing is growing rapidly. Knowledge graphs, as an important form of knowledge representation, have been widely utilized in various emotion-related tasks. However, existing knowledge graphs mainly focus on the representation and reasoning of general factual knowledge, while there are still significant deficiencies in the understanding and reasoning of emotional knowledge. In this work, we construct a comprehensive and accurate emotional commonsense knowledge graph, ECoK. We integrate cutting-edge theories from multiple disciplines such as psychology, cognitive science, and linguistics, and combine techniques such as large language models and natural language processing. By mining a large amount of text, dialogue, and sentiment analysis data, we construct rich emotional knowledge and establish the knowledge generation model COMET-ECoK. Experimental results show that ECoK contains high-quality emotional reasoning knowledge, and the performance of our knowledge generation model surpasses GPT-4-Turbo, which can help downstream tasks better understand and reason about emotions. Our data and code is available from https://github.com/ZornWang/ECoK.
Aspect sentiment quad prediction (ASQP) aims to predict four aspect-based elements, including aspect term, opinion term, aspect category, and sentiment polarity. In practice, unseen aspects, due to distinct data distribution, impose many challenges for a trained neural model. Motivated by this, this work formulates ASQP into the few-shot scenario, which aims for fast adaptation in real applications. Therefore, we first construct a few-shot ASQP dataset (FSQP) that contains richer categories and is more balanced for the few-shot study. Moreover, recent methods extract quads through a generation paradigm, which involves converting the input sentence into a templated target sequence. However, they primarily focus on the utilization of a single template or the consideration of different template orders, thereby overlooking the correlations among various templates. To tackle this issue, we further propose a Broad-view Soft Prompting (BvSP) method that aggregates multiple templates with a broader view by taking into account the correlation between the different templates. Specifically, BvSP uses the pre-trained language model to select the most relevant k templates with Jensen–Shannon divergence. BvSP further introduces soft prompts to guide the pre-trained language model using the selected templates. Then, we aggregate the results of multi-templates by voting mechanism. Empirical results demonstrate that BvSP significantly outperforms the state-of-the-art methods under four few-shot settings and other public datasets. Our code and dataset are available at https://github.com/byinhao/BvSP.
Temporal knowledge graph completion aims to infer the missing facts in temporal knowledge graphs. Current approaches usually embed factual knowledge into continuous vector space and apply geometric operations to learn potential patterns in temporal knowledge graphs. However, these methods only adopt a single operation, which may have limitations in capturing the complex temporal dynamics present in temporal knowledge graphs. Therefore, we propose a simple but effective method, i.e. TCompoundE, which is specially designed with two geometric operations, including time-specific and relation-specific operations. We provide mathematical proofs to demonstrate the ability of TCompoundE to encode various relation patterns. Experimental results show that our proposed model significantly outperforms existing temporal knowledge graph embedding models. Our code is available at https://github.com/nk-ruiying/TCompoundE.
Theory of Mind (ToM) is the cognitive capability to perceive and ascribe mental states to oneself and others. Recent research has sparked a debate over whether large language models (LLMs) exhibit a form of ToM. However, existing ToM evaluations are hindered by challenges such as constrained scope, subjective judgment, and unintended contamination, yielding inadequate assessments. To address this gap, we introduce ToMBench with three key characteristics: a systematic evaluation framework encompassing 8 tasks and 31 abilities in social cognition, a multiple-choice question format to support automated and unbiased evaluation, and a build-from-scratch bilingual inventory to strictly avoid data leakage. Based on ToMBench, we conduct extensive experiments to evaluate the ToM performance of 10 popular LLMs across tasks and abilities. We find that even the most advanced LLMs like GPT-4 lag behind human performance by over 10% points, indicating that LLMs have not achieved a human-level theory of mind yet. Our aim with ToMBench is to enable an efficient and effective evaluation of LLMs’ ToM capabilities, thereby facilitating the development of LLMs with inherent social intelligence.
Chinese spelling correction (CSC) aims to detect and correct spelling errors in Chinese texts. Most spelling errors are phonetically or graphically similar to the correct ones. Thus, recent works introduce multimodal features to obtain achievements. In this paper, we found that different spelling errors have various biases to each modality, highlighting the importance of appropriately exploiting multimodal features. To achieve this goal, we propose the UGMSC framework, which incorporates uncertainty into both the feature learning and correction stages. Specifically, the UGMSC framework makes predictions with multimodal features and estimates the uncertainty of the corresponding modalities. Then it dynamically fuses the features of all modalities for model learning, and performs spelling correction under the uncertainty-guided strategy. Experimental results on three public datasets demonstrate that the proposed approach provides a significant improvement compared with previous strong multimodal models. The proposed framework is model-agnostic and can be easily applied to other multimodal models.
Evidence-aware fake news detection aims to determine the veracity of a given news (i.e., claim) with external evidences. We find that existing methods lack sufficient semantic perception and are easily blinded by textual expressions. For example, they still make the same prediction after we flip the semantics of a claim, which makes them vulnerable to malicious attacks. In this paper, we propose a model-agnostic training framework to improve the semantic perception of evidence-aware fake news detection. Specifically, we first introduce two kinds of data augmentation to complement the original training set with synthetic data. The semantic-flipped augmentation synthesizes claims with similar textual expressions but opposite semantics, while the semantic-invariant augmentation synthesizes claims with the same semantics but different writing styles. Moreover, we design a novel module to learn better claim representation which is more sensitive to the semantics, and further incorporate it into a multi-objective optimization paradigm. In the experiments, we also extend the original test set of benchmark datasets with the synthetic data to better evaluate the model perception of semantics. Experimental results demonstrate that our approach significantly outperforms the state-of-the-art methods on the extended test set, while achieving competitive performance on the original one. Our source code are released at https://github.com/Xyang1998/RobustFND.
Most named entity recognition (NER) systems focus on improving model performance, ignoring the need to quantify model uncertainty, which is critical to the reliability of NER systems in open environments. Evidential deep learning (EDL) has recently been proposed as a promising solution to explicitly model predictive uncertainty for classification tasks. However, directly applying EDL to NER applications faces two challenges, i.e., the problems of sparse entities and OOV/OOD entities in NER tasks. To address these challenges, we propose a trustworthy NER framework named E-NER by introducing two uncertainty-guided loss terms to the conventional EDL, along with a series of uncertainty-guided training strategies. Experiments show that E-NER can be applied to multiple NER paradigms to obtain accurate uncertainty estimation. Furthermore, compared to state-of-the-art baselines, the proposed method achieves a better OOV/OOD detection performance and better generalization ability on OOV entities.
Recently, aspect sentiment quad prediction has received widespread attention in the field of aspect-based sentiment analysis. Existing studies extract quadruplets via pre-trained generative language models to paraphrase the original sentence into a templated target sequence. However, previous works only focus on what to generate but ignore what not to generate. We argue that considering the negative samples also leads to potential benefits. In this work, we propose a template-agnostic method to control the token-level generation, which boosts original learning and reduces mistakes simultaneously. Specifically, we introduce Monte Carlo dropout to understand the built-in uncertainty of pre-trained language models, acquiring the noises and errors. We further propose marginalized unlikelihood learning to suppress the uncertainty-aware mistake tokens. Finally, we introduce minimization entropy to balance the effects of marginalized unlikelihood learning. Extensive experiments on four public datasets demonstrate the effectiveness of our approach on various generation templates.
In recent years, few-shot relation classification has evoked many research interests. Yet a more challenging problem, i.e. none-of-the-above (NOTA), is under-explored. Existing works mainly regard NOTA as an extra class and treat it the same as known relations. However, such a solution ignores the overall instance distribution, where NOTA instances are actually outliers and distributed unnaturally compared with known ones. In this paper, we propose a density-aware prototypical network (D-Proto) to treat various instances distinctly. Specifically, we design unique training objectives to separate known instances and isolate NOTA instances, respectively. This produces an ideal instance distribution, where known instances are dense yet NOTAs have a small density. Moreover, we propose a NOTA detection module to further enlarge the density of known samples, and discriminate NOTA and known samples accurately. Experimental results demonstrate that the proposed method outperforms strong baselines with robustness towards various NOTA rates. The code will be made public after the paper is accepted.
Tabular-format data is widely adopted in various real-world applications. Various machine learning models have achieved remarkable success in both industrial applications and data-science competitions. Despite these successes, most current machine learning methods for tabular data lack accurate confidence estimation, which is needed by some high-risk sensitive applications such as credit modeling and financial fraud detection. In this paper, we study the confidence estimation of machine learning models applied to tabular data. The key finding of our paper is that a real-world tabular dataset typically contains implicit sample relations, and this can further help to obtain a more accurate estimation. To this end, we introduce a general post-training confidence calibration framework named RECAL to calibrate the predictive confidence of current machine learning models by employing graph neural networks to model the relations between different samples. We perform extensive experiments on tabular datasets with both implicit and explicit graph structures and show that RECAL can significantly improve the calibration quality compared to the conventional method without considering the sample relations.
Recently, aspect sentiment quad prediction (ASQP) has become a popular task in the field of aspect-level sentiment analysis. Previous work utilizes a predefined template to paraphrase the original sentence into a structure target sequence, which can be easily decoded as quadruplets of the form (aspect category, aspect term, opinion term, sentiment polarity). The template involves the four elements in a fixed order. However, we observe that this solution contradicts with the order-free property of the ASQP task, since there is no need to fix the template order as long as the quadruplet is extracted correctly. Inspired by the observation, we study the effects of template orders and find that some orders help the generative model achieve better performance. It is hypothesized that different orders provide various views of the quadruplet. Therefore, we propose a simple but effective method to identify the most proper orders, and further combine multiple proper templates as data augmentation to improve the ASQP task. Specifically, we use the pre-trained language model to select the orders with minimal entropy. By fine-tuning the pre-trained language model with these template orders, our approach improves the performance of quad prediction, and outperforms state-of-the-art methods significantly in low-resource settings.
Nowadays, transformer-based models gradually become the default choice for artificial intelligence pioneers. The models also show superiority even in the few-shot scenarios. In this paper, we revisit the classical methods and propose a new few-shot alternative. Specifically, we investigate the few-shot one-class problem, which actually takes a known sample as a reference to detect whether an unknown instance belongs to the same class. This problem can be studied from the perspective of sequence match. It is shown that with meta-learning, the classical sequence match method, i.e. Compare-Aggregate, significantly outperforms transformer ones. The classical approach requires much less training cost. Furthermore, we perform an empirical comparison between two kinds of sequence match approaches under simple fine-tuning and meta-learning. Meta-learning causes the transformer models’ features to have high-correlation dimensions. The reason is closely related to the number of layers and heads of transformer models. Experimental codes and data are available at https://github.com/hmt2014/FewOne.
Aspect category detection (ACD) in sentiment analysis aims to identify the aspect categories mentioned in a sentence. In this paper, we formulate ACD in the few-shot learning scenario. However, existing few-shot learning approaches mainly focus on single-label predictions. These methods can not work well for the ACD task since a sentence may contain multiple aspect categories. Therefore, we propose a multi-label few-shot learning method based on the prototypical network. To alleviate the noise, we design two effective attention mechanisms. The support-set attention aims to extract better prototypes by removing irrelevant aspects. The query-set attention computes multiple prototype-specific representations for each query instance, which are then used to compute accurate distances with the corresponding prototypes. To achieve multi-label inference, we further learn a dynamic threshold per instance by a policy network. Extensive experimental results on three datasets demonstrate that the proposed method significantly outperforms strong baselines.
A mind-map is a diagram that represents the central concept and key ideas in a hierarchical way. Converting plain text into a mind-map will reveal its key semantic structure and be easier to understand. Given a document, the existing automatic mind-map generation method extracts the relationships of every sentence pair to generate the directed semantic graph for this document. The computation complexity increases exponentially with the length of the document. Moreover, it is difficult to capture the overall semantics. To deal with the above challenges, we propose an efficient mind-map generation network that converts a document into a graph via sequence-to-graph. To guarantee a meaningful mind-map, we design a graph refinement module to adjust the relation graph in a reinforcement learning manner. Extensive experimental results demonstrate that the proposed approach is more effective and efficient than the existing methods. The inference time is reduced by thousands of times compared with the existing methods. The case studies verify that the generated mind-maps better reveal the underlying semantic structures of the document.
Aspect-based sentiment analysis (ABSA) is to predict the sentiment polarity towards a particular aspect in a sentence. Recently, this task has been widely addressed by the neural attention mechanism, which computes attention weights to softly select words for generating aspect-specific sentence representations. The attention is expected to concentrate on opinion words for accurate sentiment prediction. However, attention is prone to be distracted by noisy or misleading words, or opinion words from other aspects. In this paper, we propose an alternative hard-selection approach, which determines the start and end positions of the opinion snippet, and selects the words between these two positions for sentiment prediction. Specifically, we learn deep associations between the sentence and aspect, and the long-term dependencies within the sentence by leveraging the pre-trained BERT model. We further detect the opinion snippet by self-critical reinforcement learning. Especially, experimental results demonstrate the effectiveness of our method and prove that our hard-selection approach outperforms soft-selection approaches when handling multi-aspect sentences.
Aspect level sentiment classification is a fine-grained sentiment analysis task. To detect the sentiment towards a particular aspect in a sentence, previous studies have developed various attention-based methods for generating aspect-specific sentence representations. However, the attention may inherently introduce noise and downgrade the performance. In this paper, we propose constrained attention networks (CAN), a simple yet effective solution, to regularize the attention for multi-aspect sentiment analysis, which alleviates the drawback of the attention mechanism. Specifically, we introduce orthogonal regularization on multiple aspects and sparse regularization on each single aspect. Experimental results on two public datasets demonstrate the effectiveness of our approach. We further extend our approach to multi-task settings and outperform the state-of-the-art methods.
Cross-domain sentiment classification has drawn much attention in recent years. Most existing approaches focus on learning domain-invariant representations in both the source and target domains, while few of them pay attention to the domain-specific information. Despite the non-transferability of the domain-specific information, simultaneously learning domain-dependent representations can facilitate the learning of domain-invariant representations. In this paper, we focus on aspect-level cross-domain sentiment classification, and propose to distill the domain-invariant sentiment features with the help of an orthogonal domain-dependent task, i.e. aspect detection, which is built on the aspects varying widely in different domains. We conduct extensive experiments on three public datasets and the experimental results demonstrate the effectiveness of our method.