Kostyantyn Guzhva
2024
Semantic Graphs for Syntactic Simplification: A Revisit from the Age of LLM
Peiran Yao
|
Kostyantyn Guzhva
|
Denilson Barbosa
Proceedings of TextGraphs-17: Graph-based Methods for Natural Language Processing
Symbolic sentence meaning representations, such as AMR (Abstract Meaning Representation) provide expressive and structured semantic graphs that act as intermediates that simplify downstream NLP tasks. However, the instruction-following capability of large language models (LLMs) offers a shortcut to effectively solve NLP tasks, questioning the utility of semantic graphs. Meanwhile, recent work has also shown the difficulty of using meaning representations merely as a helpful auxiliary for LLMs. We revisit the position of semantic graphs in syntactic simplification, the task of simplifying sentence structures while preserving their meaning, which requires semantic understanding, and evaluate it on a new complex and natural dataset. The AMR-based method that we propose, AMRS3, demonstrates that state-of-the-art meaning representations can lead to easy-to-implement simplification methods with competitive performance and unique advantages in cost, interpretability, and generalization. With AMRS3 as an anchor, we discover that syntactic simplification is a task where semantic graphs are helpful in LLM prompting. We propose AMRCoC prompting that guides LLMs to emulate graph algorithms for explicit symbolic reasoning on AMR graphs, and show its potential for improving LLM on semantic-centered tasks like syntactic simplification.
2023
NLP Workbench: Efficient and Extensible Integration of State-of-the-art Text Mining Tools
Peiran Yao
|
Matej Kosmajac
|
Abeer Waheed
|
Kostyantyn Guzhva
|
Natalie Hervieux
|
Denilson Barbosa
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations
NLP Workbench is a web-based platform for text mining that allows non-expert users to obtain semantic understanding of large-scale corpora using state-of-the-art text mining models. The platform is built upon latest pre-trained models and open source systems from academia that provide semantic analysis functionalities, including but not limited to entity linking, sentiment analysis, semantic parsing, and relation extraction. Its extensible design enables researchers and developers to smoothly replace an existing model or integrate a new one. To improve efficiency, we employ a microservice architecture that facilitates allocation of acceleration hardware and parallelization of computation. This paper presents the architecture of NLP Workbench and discusses the challenges we faced in designing it. We also discuss diverse use cases of NLP Work- bench and the benefits of using it over other approaches. The platform is under active devel- opment, with its source code released under the MIT license. A website and a short video demonstrating our platform are also available.
Search