Junho Kim


2024

pdf
Coconut: Contextualized Commonsense Unified Transformers for Graph-Based Commonsense Augmentation of Language Models
Jun-Hyung Park | Mingyu Lee | Junho Kim | SangKeun Lee
Findings of the Association for Computational Linguistics: ACL 2024

In this paper, we introduce COCONUT to effectively guide the contextualization of structured commonsense knowledge based on largelanguage models. COCONUT employs a contextualized knowledge prompting scheme to gather high-quality contextualization examplesfrom a large language model. These examples are subsequently distilled into small language models to enhance their contextualization capability. Extensive evaluations show that COCONUT considerably improves commonsense reasoning performance across diverse benchmarks, models, and settings, exhibiting its flexibility and universality in generating contextualized commonsense knowledge. Notably,COCONUT consistently outperforms the state-of-the-art technique by an average of 5.8%.

pdf
Towards Robust and Generalized Parameter-Efficient Fine-Tuning for Noisy Label Learning
Yeachan Kim | Junho Kim | SangKeun Lee
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Parameter-efficient fine-tuning (PEFT) has enabled the efficient optimization of cumbersome language models in real-world settings. However, as datasets in such environments often contain noisy labels that adversely affect performance, PEFT methods are inevitably exposed to noisy labels. Despite this challenge, the adaptability of PEFT to noisy environments remains underexplored. To bridge this gap, we investigate various PEFT methods under noisy labels. Interestingly, our findings reveal that PEFT has difficulty in memorizing noisy labels due to its inherently limited capacity, resulting in robustness. However, we also find that such limited capacity simultaneously makes PEFT more vulnerable to interference of noisy labels, impeding the learning of clean samples. To address this issue, we propose Clean Routing (CleaR), a novel routing-based PEFT approach that adaptively activates PEFT modules. In CleaR, PEFT modules are preferentially exposed to clean data while bypassing the noisy ones, thereby minimizing the noisy influence. To verify the efficacy of CleaR, we perform extensive experiments on diverse configurations of noisy labels. The results convincingly demonstrate that CleaR leads to substantially improved performance in noisy environments

2023

pdf
Client-Customized Adaptation for Parameter-Efficient Federated Learning
Yeachan Kim | Junho Kim | Wing-Lam Mok | Jun-Hyung Park | SangKeun Lee
Findings of the Association for Computational Linguistics: ACL 2023

Despite the versatility of pre-trained language models (PLMs) across domains, their large memory footprints pose significant challenges in federated learning (FL), where the training model has to be distributed between a server and clients. One potential solution to bypass such constraints might be the use of parameter-efficient fine-tuning (PEFT) in the context of FL. However, we have observed that typical PEFT tends to severely suffer from heterogeneity among clients in FL scenarios, resulting in unstable and slow convergence. In this paper, we propose Client-Customized Adaptation (C2A), a novel hypernetwork-based FL framework that generates client-specific adapters by conditioning the client information. With the effectiveness of the hypernetworks in generating customized weights through learning to adopt the different characteristics of inputs, C2A can maximize the utility of shared model parameters while minimizing the divergence caused by client heterogeneity. To verify the efficacy of C2A, we perform extensive evaluations on FL scenarios involving heterogeneity in label and language distributions. Comprehensive evaluation results clearly support the superiority of C2A in terms of both efficiency and effectiveness in FL scenarios.

pdf
SMoP: Towards Efficient and Effective Prompt Tuning with Sparse Mixture-of-Prompts
Joon-Young Choi | Junho Kim | Jun-Hyung Park | Wing-Lam Mok | SangKeun Lee
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Prompt tuning has emerged as a successful parameter-efficient alternative to the full fine-tuning of language models. However, prior works on prompt tuning often utilize long soft prompts of up to 100 tokens to improve performance, overlooking the inefficiency associated with extended inputs. In this paper, we propose a novel prompt tuning method SMoP (Sparse Mixture-of-Prompts) that utilizes short soft prompts for efficient training and inference while maintaining performance gains typically induced from longer soft prompts. To achieve this, SMoP employs a gating mechanism to train multiple short soft prompts specialized in handling different subsets of the data, providing an alternative to relying on a single long soft prompt to cover the entire data. Experimental results demonstrate that SMoP outperforms baseline methods while reducing training and inference costs. We release our code at https://github.com/jyjohnchoi/SMoP.

pdf
Leap-of-Thought: Accelerating Transformers via Dynamic Token Routing
Yeachan Kim | Junho Kim | Jun-Hyung Park | Mingyu Lee | SangKeun Lee
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Computational inefficiency in transformers has been a long-standing challenge, hindering the deployment in resource-constrained or real-time applications. One promising approach to mitigate this limitation is to progressively remove less significant tokens, given that the sequence length strongly contributes to the inefficiency. However, this approach entails a potential risk of losing crucial information due to the irrevocable nature of token removal. In this paper, we introduce Leap-of-Thought (LoT), a novel token reduction approach that dynamically routes tokens within layers. Unlike previous work that irrevocably discards tokens, LoT enables tokens to ‘leap’ across layers. This ensures that all tokens remain accessible in subsequent layers while reducing the number of tokens processed within layers. We achieve this by pairing the transformer with dynamic token routers, which learn to selectively process tokens essential for the task. Evaluation results clearly show that LoT achieves a substantial improvement in computational efficiency. Specifically, LoT attains up to 25x faster inference time without a significant loss in accuracy

2022

pdf
Tutoring Helps Students Learn Better: Improving Knowledge Distillation for BERT with Tutor Network
Junho Kim | Jun-Hyung Park | Mingyu Lee | Wing-Lam Mok | Joon-Young Choi | SangKeun Lee
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Pre-trained language models have achieved remarkable successes in natural language processing tasks, coming at the cost of increasing model size. To address this issue, knowledge distillation (KD) has been widely applied to compress language models. However, typical KD approaches for language models have overlooked the difficulty of training examples, suffering from incorrect teacher prediction transfer and sub-efficient training. In this paper, we propose a novel KD framework, Tutor-KD, which improves the distillation effectiveness by controlling the difficulty of training examples during pre-training. We introduce a tutor network that generates samples that are easy for the teacher but difficult for the student, with training on a carefully designed policy gradient method. Experimental results show that Tutor-KD significantly and consistently outperforms the state-of-the-art KD methods with variously sized student models on the GLUE benchmark, demonstrating that the tutor can effectively generate training examples for the student.

pdf
Efficient Pre-training of Masked Language Model via Concept-based Curriculum Masking
Mingyu Lee | Jun-Hyung Park | Junho Kim | Kang-Min Kim | SangKeun Lee
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Self-supervised pre-training has achieved remarkable success in extensive natural language processing tasks. Masked language modeling (MLM) has been widely used for pre-training effective bidirectional representations but comes at a substantial training cost. In this paper, we propose a novel concept-based curriculum masking (CCM) method to efficiently pre-train a language model. CCM has two key differences from existing curriculum learning approaches to effectively reflect the nature of MLM. First, we introduce a novel curriculum that evaluates the MLM difficulty of each token based on a carefully-designed linguistic difficulty criterion. Second, we construct a curriculum that masks easy words and phrases first and gradually masks related ones to the previously masked ones based on a knowledge graph. Experimental results show that CCM significantly improves pre-training efficiency. Specifically, the model trained with CCM shows comparative performance with the original BERT on the General Language Understanding Evaluation benchmark at half of the training cost.

pdf
Learning from Missing Relations: Contrastive Learning with Commonsense Knowledge Graphs for Commonsense Inference
Yong-Ho Jung | Jun-Hyung Park | Joon-Young Choi | Mingyu Lee | Junho Kim | Kang-Min Kim | SangKeun Lee
Findings of the Association for Computational Linguistics: ACL 2022

Commonsense inference poses a unique challenge to reason and generate the physical, social, and causal conditions of a given event. Existing approaches to commonsense inference utilize commonsense transformers, which are large-scale language models that learn commonsense knowledge graphs. However, they suffer from a lack of coverage and expressive diversity of the graphs, resulting in a degradation of the representation quality. In this paper, we focus on addressing missing relations in commonsense knowledge graphs, and propose a novel contrastive learning framework called SOLAR. Our framework contrasts sets of semantically similar and dissimilar events, learning richer inferential knowledge compared to existing approaches. Empirical results demonstrate the efficacy of SOLAR in commonsense inference of diverse commonsense knowledge graphs. Specifically, SOLAR outperforms the state-of-the-art commonsense transformer on commonsense inference with ConceptNet by 1.84% on average among 8 automatic evaluation metrics. In-depth analysis of SOLAR sheds light on the effects of the missing relations utilized in learning commonsense knowledge graphs.