This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we generate only three BibTeX files per volume, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
Few-shot dialogue state tracking (DST) with Large Language Models (LLM) relies on an effective and efficient conversation retriever to find similar in-context examples for prompt learning. Previous works use raw dialogue context as search keys and queries, and a retriever is fine-tuned with annotated dialogues to achieve superior performance. However, the approach is less suited for scaling to new domains or new annotation languages, where fine-tuning data is unavailable. To address this problem, we handle the task of conversation retrieval based on text summaries of the conversations.A LLM-based conversation summarizer is adopted for query and key generation, which enables effective maximum inner product search. To avoid the extra inference cost brought by LLM-based conversation summarization, we further distill a light-weight conversation encoder which produces query embeddings without decoding summaries for test conversations. We validate our retrieval approach on MultiWOZ datasets with GPT-Neo-2.7B and LLaMA-7B/30B. The experimental results show a significant improvement over relevant baselines in real few-shot DST settings.
Spurred by recent advances in Large Language Models (LLMs), virtual assistants are poised to take a leap forward in terms of their dialogue capabilities. Yet a major bottleneck to achieving genuinely transformative task-oriented dialogue capabilities remains the scarcity of high quality data. Existing datasets, while impressive in scale, have limited domain coverage and contain few genuinely challenging conversational phenomena; those which are present are typically unlabelled, making it difficult to assess the strengths and weaknesses of models without time-consuming and costly human evaluation. Moreover, creating high quality dialogue data has until now required considerable human input, limiting both the scale of these datasets and the ability to rapidly bootstrap data for a new target domain. We aim to overcome these issues with LUCID, a modularised and highly automated LLM-driven data generation system that produces realistic, diverse and challenging dialogues. We use LUCID to generate a seed dataset of 4,277 conversations across 100 intents to demonstrate its capabilities, with a human review finding consistently high quality labels in the generated data.
We consider a new perspective on dialog state tracking (DST), the task of estimating a user’s goal through the course of a dialog. By formulating DST as a semantic parsing task over hierarchical representations, we can incorporate semantic compositionality, cross-domain knowledge sharing and co-reference. We present TreeDST, a dataset of 27k conversations annotated with tree-structured dialog states and system acts. We describe an encoder-decoder framework for DST with hierarchical representations, which leads to ~20% improvement over state-of-the-art DST approaches that operate on a flat meaning space of slot-value pairs.
This paper describes the University of Edinburgh (UEDIN) ASR systems for the 2014 IWSLT Evaluation. Notable features of the English system include deep neural network acoustic models in both tandem and hybrid configuration with the use of multi-level adaptive networks, LHUC adaptation and Maxout units. The German system includes lightly supervised training and a new method for dictionary generation. Our voice activity detection system now uses a semi-Markov model to incorporate a prior on utterance lengths. There are improvements of up to 30% relative WER on the tst2013 English test set.
In this paper we describe the ASR system for German built at the University of Edinburgh (UEDIN) for the 2013 IWSLT evaluation campaign. For ASR, the major challenge to overcome, was to find suitable acoustic training data. Due to the lack of expertly transcribed acoustic speech data for German, acoustic model training had to be performed on publicly available data crawled from the internet. For evaluation, lack of a manual segmentation into utterances was handled in two different ways: by generating an automatic segmentation, and by treating entire input files as a single segment. Demonstrating the latter method is superior in the current task, we obtained a WER of 28.16% on the dev set and 36.21% on the test set.
Within the framework of the Dutch-Flemish programme STEVIN, the JASMIN-CGN (Jongeren, Anderstaligen en Senioren in Mens-machine Interactie Corpus Gesproken Nederlands) project was carried out, which was aimed at collecting speech of children, non-natives and elderly people. The JASMIN-CGN project is an extension of the Spoken Dutch Corpus (CGN) along three dimensions. First, by collecting a corpus of contemporary Dutch as spoken by children of different age groups, elderly people and non-natives with different mother tongues, an extension along the age and mother tongue dimensions was achieved. In addition, we collected speech material in a communication setting that was not envisaged in the CGN: human-machine interaction. One third of the data was collected in Flanders and two thirds in the Netherlands. In this paper we report on our experiences in collecting this corpus and we describe some of the important decisions that we made in the attempt to combine efficiency and high quality.