This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we generate only three BibTeX files per volume, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
Large language models respond well in high-resource languages like English but struggle in low-resource languages. It may arise from the lack of high-quality instruction following data in these languages. Directly translating English samples into these languages can be a solution but unreliable, leading to responses with translation errors and lacking language-specific or cultural knowledge. To address this issue, we propose a novel method to construct cross-lingual instruction following samples with instruction in English and response in low-resource languages. Specifically, the language model first learns to generate appropriate English instructions according to the natural web texts in other languages as responses. The candidate cross-lingual instruction tuning samples are further refined and diversified. We have employed this method to build a large-scale cross-lingual instruction tuning dataset on 10 languages, namely X-Instruction. The instruction data built using our method incorporate more language-specific knowledge compared with the naive translation method. Experimental results have shown that the response quality of the model tuned on X-Instruction greatly exceeds the model distilled from a powerful teacher model, reaching or even surpassing the ones of ChatGPT. In addition, we find that models tuned on cross-lingual instruction following samples can follow the instruction in the output language without further tuning.
Ensembling different large language models (LLMs) to unleash their complementary potential and harness their individual strengths is highly valuable. Nevertheless, vocabulary discrepancies among various LLMs have constrained previous studies to either selecting or blending completely generated outputs. This limitation hinders the dynamic correction and enhancement of outputs during the generation process, resulting in a limited capacity for effective ensemble. To address this issue, we propose a novel method to Ensemble LLMs via Vocabulary Alignment (EVA). EVA bridges the lexical gap among various LLMs, enabling meticulous ensemble at each generation step. Specifically, we first learn mappings between the vocabularies of different LLMs with the assistance of overlapping tokens. Subsequently, these mappings are employed to project output distributions of LLMs into a unified space, facilitating a fine-grained ensemble. Finally, we design a filtering strategy to exclude models that generate unfaithful tokens. Experimental results on commonsense reasoning, arithmetic reasoning, machine translation, and data-to-text generation tasks demonstrate the superiority of our approach compared with individual LLMs and previous ensemble methods conducted on complete outputs. Further analyses confirm that our approach can leverage knowledge from different language models and yield consistent improvement.
Unsupervised neural machine translation (UNMT) models are trained with pseudo-parallel sentences constructed by on-the-fly back-translation using monolingual corpora. However, the quality of pseudo-parallel sentences cannot be guaranteed, which hinders the final performance of UNMT. This paper demonstrates that although UNMT usually generates mistakes during pseudo-parallel data construction, some of them can be corrected by the token-level translations that exist in the embedding table. Therefore, we propose a self-correction method to automatically improve the quality of pseudo-parallel sentences during training, thereby enhancing translation performance. Specifically, for a pseudo sentence pair, our self-correction method first estimates the alignment relations between tokens by treating and solving it as an optimal transport problem. Then, we measure the translation reliability for each token and detect the mis-translated ones. Finally, the mis-translated tokens are corrected with real-time computed token-by-token translations based on the embedding table, yielding a better training example. Considering that the modified examples are semantically equivalent to the original ones when UNMT converges, we introduce second-phase training to strengthen the output consistency between them, further improving the generalization capability and translation performance. Empirical results on widely used UNMT datasets demonstrate the effectiveness of our method and it significantly outperforms several strong baselines.
Recent studies have revealed the remarkable cross-lingual capability of multilingual pre-trained language models (mPLMs), even when pre-trained without parallel corpora (mono-mPLMs). Intuitively, semantic alignments may be the reason behind such capability but remain under-explored. In this work, we investigate the alignment properties from the token perspective in mono-mPLMs and find that the alignments correspond to the geometric similarity of embedding space across different languages. Nevertheless, mono-mPLMs tend to damage this geometric similarity at the higher layers due to the lack of cross-lingual interactions, thus limiting their cross-lingual transfer capabilities. To address this issue, we introduce token-level and semantic-level code-switched masked language modeling, employing the self-induced token alignments to explicitly improve cross-lingual interactions over layers of mono-mPLMs without relying on parallel sentences. We evaluate our method on various natural language understanding tasks and unsupervised machine translation tasks. The results demonstrate that our methods outperform the strong baselines and achieve comparable performance with mPLMs trained with parallel corpora.
Back-translation (BT) has become one of the de facto components in unsupervised neural machine translation (UNMT), and it explicitly makes UNMT have translation ability. However, all the pseudo bi-texts generated by BT are treated equally as clean data during optimization without considering the quality diversity, leading to slow convergence and limited translation performance. To address this problem, we propose a curriculum learning method to gradually utilize pseudo bi-texts based on their quality from multiple granularities. Specifically, we first apply crosslingual word embedding to calculate the potential translation difficulty (quality) for the monolingual sentences. Then, the sentences are fed into UNMT from easy to hard batch by batch. Furthermore, considering the quality of sentences/tokens in a particular batch are also diverse, we further adopt the model itself to calculate the fine-grained quality scores, which are served as learning factors to balance the contributions of different parts when computing loss and encourage the UNMT model to focus on pseudo data with higher quality. Experimental results on WMT 14 En-Fr, WMT 14 En-De, WMT 16 En-Ro, and LDC En-Zh translation tasks demonstrate that the proposed method achieves consistent improvements with faster convergence speed.