Jiaxiang Liu


2021

pdf
Alpha at SemEval-2021 Task 6: Transformer Based Propaganda Classification
Zhida Feng | Jiji Tang | Jiaxiang Liu | Weichong Yin | Shikun Feng | Yu Sun | Li Chen
Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021)

This paper describes our system participated in Task 6 of SemEval-2021: the task focuses on multimodal propaganda technique classification and it aims to classify given image and text into 22 classes. In this paper, we propose to use transformer based architecture to fuse the clues from both image and text. We explore two branches of techniques including fine-tuning the text pretrained transformer with extended visual features, and fine-tuning the multimodal pretrained transformers. For the visual features, we have tested both grid features based on ResNet and salient region features from pretrained object detector. Among the pretrained multimodal transformers, we choose ERNIE-ViL, a two-steam cross-attended transformers pretrained on large scale image-caption aligned data. Fine-tuing ERNIE-ViL for our task produce a better performance due to general joint multimodal representation for text and image learned by ERNIE-ViL. Besides, as the distribution of the classification labels is very unbalanced, we also make a further attempt on the loss function and the experiment result shows that focal loss would perform better than cross entropy loss. Last we have won first for subtask C in the final competition.

pdf
abcbpc at SemEval-2021 Task 7: ERNIE-based Multi-task Model for Detecting and Rating Humor and Offense
Chao Pang | Xiaoran Fan | Weiyue Su | Xuyi Chen | Shuohuan Wang | Jiaxiang Liu | Xuan Ouyang | Shikun Feng | Yu Sun
Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021)

This paper describes our system participated in Task 7 of SemEval-2021: Detecting and Rating Humor and Offense. The task is designed to detect and score humor and offense which are influenced by subjective factors. In order to obtain semantic information from a large amount of unlabeled data, we applied unsupervised pre-trained language models. By conducting research and experiments, we found that the ERNIE 2.0 and DeBERTa pre-trained models achieved impressive performance in various subtasks. Therefore, we applied the above pre-trained models to fine-tune the downstream neural network. In the process of fine-tuning the model, we adopted multi-task training strategy and ensemble learning method. Based on the above strategy and method, we achieved RMSE of 0.4959 for subtask 1b, and finally won the first place.

2020

pdf
Kk2018 at SemEval-2020 Task 9: Adversarial Training for Code-Mixing Sentiment Classification
Jiaxiang Liu | Xuyi Chen | Shikun Feng | Shuohuan Wang | Xuan Ouyang | Yu Sun | Zhengjie Huang | Weiyue Su
Proceedings of the Fourteenth Workshop on Semantic Evaluation

Code switching is a linguistic phenomenon which may occur within a multilingual setting where speakers share more than one language. With the increasing communication between groups with different languages, this phenomenon is more and more popular. However, there are little research and data in this area, especially in code-mixing sentiment classification. In this work, the domain transfer learning from state-of-the-art uni-language model ERNIE is tested on the code-mixing dataset, and surprisingly, a strong baseline is achieved. And further more, the adversarial training with a multi-lingual model is used to achieved 1st place of SemEval-2020 Task9 Hindi-English sentiment classification competition.

pdf
Galileo at SemEval-2020 Task 12: Multi-lingual Learning for Offensive Language Identification Using Pre-trained Language Models
Shuohuan Wang | Jiaxiang Liu | Xuan Ouyang | Yu Sun
Proceedings of the Fourteenth Workshop on Semantic Evaluation

This paper describes Galileo’s performance in SemEval-2020 Task 12 on detecting and categorizing offensive language in social media. For Offensive Language Identification, we proposed a multi-lingual method using Pre-trained Language Models, ERNIE and XLM-R. For offensive language categorization, we proposed a knowledge distillation method trained on soft labels generated by several supervised models. Our team participated in all three sub-tasks. In Sub-task A - Offensive Language Identification, we ranked first in terms of average F1 scores in all languages. We are also the only team which ranked among the top three across all languages. We also took the first place in Sub-task B - Automatic Categorization of Offense Types and Sub-task C - Offence Target Identification.

pdf
ERNIE at SemEval-2020 Task 10: Learning Word Emphasis Selection by Pre-trained Language Model
Zhengjie Huang | Shikun Feng | Weiyue Su | Xuyi Chen | Shuohuan Wang | Jiaxiang Liu | Xuan Ouyang | Yu Sun
Proceedings of the Fourteenth Workshop on Semantic Evaluation

This paper describes the system designed by ERNIE Team which achieved the first place in SemEval-2020 Task 10: Emphasis Selection For Written Text in Visual Media. Given a sentence, we are asked to find out the most important words as the suggestion for automated design. We leverage the unsupervised pre-training model and finetune these models on our task. After our investigation, we found that the following models achieved an excellent performance in this task: ERNIE 2.0, XLM-ROBERTA, ROBERTA and ALBERT. We combine a pointwise regression loss and a pairwise ranking loss which is more close to the final Match m metric to finetune our models. And we also find that additional feature engineering and data augmentation can help improve the performance. Our best model achieves the highest score of 0.823 and ranks first for all kinds of metrics.

pdf
PGL at TextGraphs 2020 Shared Task: Explanation Regeneration using Language and Graph Learning Methods
Weibin Li | Yuxiang Lu | Zhengjie Huang | Weiyue Su | Jiaxiang Liu | Shikun Feng | Yu Sun
Proceedings of the Graph-based Methods for Natural Language Processing (TextGraphs)

This paper describes the system designed by the Baidu PGL Team which achieved the first place in the TextGraphs 2020 Shared Task. The task focuses on generating explanations for elementary science questions. Given a question and its corresponding correct answer, we are asked to select the facts that can explain why the answer is correct for the question and answering (QA) from a large knowledge base. To address this problem, we use a pre-trained language model to recall the top-K relevant explanations for each question. Then, we adopt a re-ranking approach based on a pre-trained language model to rank the candidate explanations. To further improve the rankings, we also develop an architecture consisting both powerful pre-trained transformers and GNNs to tackle the multi-hop inference problem. The official evaluation shows that, our system can outperform the second best system by 1.91 points.

2019

pdf
OleNet at SemEval-2019 Task 9: BERT based Multi-Perspective Models for Suggestion Mining
Jiaxiang Liu | Shuohuan Wang | Yu Sun
Proceedings of the 13th International Workshop on Semantic Evaluation

This paper describes our system partici- pated in Task 9 of SemEval-2019: the task is focused on suggestion mining and it aims to classify given sentences into sug- gestion and non-suggestion classes in do- main specific and cross domain training setting respectively. We propose a multi- perspective architecture for learning rep- resentations by using different classical models including Convolutional Neural Networks (CNN), Gated Recurrent Units (GRU), Feed Forward Attention (FFA), etc. To leverage the semantics distributed in large amount of unsupervised data, we also have adopted the pre-trained Bidi- rectional Encoder Representations from Transformers (BERT) model as an en- coder to produce sentence and word rep- resentations. The proposed architecture is applied for both sub-tasks, and achieved f1-score of 0.7812 for subtask A, and 0.8579 for subtask B. We won the first and second place for the two tasks respec- tively in the final competition.