Jens Kaiser


2024

pdf
How to Translate SQuAD to German? A Comparative Study of Answer Span Retrieval Methods for Question Answering Dataset Creation
Jens Kaiser | Agnieszka Falenska
Proceedings of the 20th Conference on Natural Language Processing (KONVENS 2024)

2021

pdf
Effects of Pre- and Post-Processing on type-based Embeddings in Lexical Semantic Change Detection
Jens Kaiser | Sinan Kurtyigit | Serge Kotchourko | Dominik Schlechtweg
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume

Lexical semantic change detection is a new and innovative research field. The optimal fine-tuning of models including pre- and post-processing is largely unclear. We optimize existing models by (i) pre-training on large corpora and refining on diachronic target corpora tackling the notorious small data problem, and (ii) applying post-processing transformations that have been shown to improve performance on synchronic tasks. Our results provide a guide for the application and optimization of lexical semantic change detection models across various learning scenarios.

2020

pdf
IMS at SemEval-2020 Task 1: How Low Can You Go? Dimensionality in Lexical Semantic Change Detection
Jens Kaiser | Dominik Schlechtweg | Sean Papay | Sabine Schulte im Walde
Proceedings of the Fourteenth Workshop on Semantic Evaluation

We present the results of our system for SemEval-2020 Task 1 that exploits a commonly used lexical semantic change detection model based on Skip-Gram with Negative Sampling. Our system focuses on Vector Initialization (VI) alignment, compares VI to the currently top-ranking models for Subtask 2 and demonstrates that these can be outperformed if we optimize VI dimensionality. We demonstrate that differences in performance can largely be attributed to model-specific sources of noise, and we reveal a strong relationship between dimensionality and frequency-induced noise in VI alignment. Our results suggest that lexical semantic change models integrating vector space alignment should pay more attention to the role of the dimensionality parameter.