This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we generate only three BibTeX files per volume, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
Scientific papers and slides are two different representations of the same underlying information, but both require substantial work to prepare. While there had been prior efforts on automating document-to-slides generation, there is still a pressing need of customizing the presentation of content aligning with the persona of target audience or duration of presentation. This paper first introduces the concept of end-user specification-aware document to slides conversion that incorporates end-user specifications into the conversion process. For this, we initially introduce a new dataset reuse the existing SciDuet dataset consisting of pairs of papers and corresponding slides decks from recent years’ *ACL conferences to create four persona-aware configurations. Secondly, we present Persona-Aware-D2S, a novel approach by finetuning LLMs using target audience feedback to create persona-aware slides from scientific documents. Our evaluation on both automated metrics and qualitative human evaluation suggests that by incorporating end-user specifications into the conversion process, our model can create presentations that are not only informative but also tailored to expectations and cognitive abilities of target audience.
We present MunTTS, an end-to-end text-to-speech (TTS) system specifically for Mundari, a low-resource Indian language of the Austo-Asiatic family. Our work addresses the gap in linguistic technology for underrepresented languages by collecting and processing data to build a speech synthesis system. We begin our study by gathering a substantial dataset of Mundari text and speech and train end-to-end speech models. We also delve into the methods used for training our models, ensuring they are efficient and effective despite the data constraints. We evaluate our system with native speakers and objective metrics, demonstrating its potential as a tool for preserving and promoting the Mundari language in the digital age.
Scarcity of data and technological limitations for resource-poor languages in developing countries like India poses a threat to the development of sophisticated NLU systems for healthcare. To assess the current status of various state-of-the-art language models in healthcare, this paper studies the problem by initially proposing two different Healthcare datasets, Indian Healthcare Query Intent-WebMD and 1mg (IHQID-WebMD and IHQID-1mg) and one real world Indian hospital query data in English and multiple Indic languages (Hindi, Bengali, Tamil, Telugu, Marathi and Gujarati) which are annotated with the query intents as well as entities. Our aim is to detect query intents and corresponding entities. We perform extensive experiments on a set of models which in various realistic settings and explore two scenarios based on the access to English data only (less costly) and access to target language data (more expensive). We analyze context specific practical relevancy through empirical analysis. The results, expressed in terms of overall F-score show that our approach is practically useful to identify intents and entities.
How well can NLP models generalize to a variety of unseen tasks when provided with task instructions? To address this question, we first introduce Super-NaturalInstructions, a benchmark of 1,616 diverse NLP tasks and their expert-written instructions. Our collection covers 76 distinct task types, including but not limited to classification, extraction, infilling, sequence tagging, text rewriting, and text composition. This large and diverse collection of tasks enables rigorous benchmarking of cross-task generalization under instructions—training models to follow instructions on a subset of tasks and evaluating them on the remaining unseen ones.Furthermore, we build Tk-Instruct, a transformer model trained to follow a variety of in-context instructions (plain language task definitions or k-shot examples). Our experiments show that Tk-Instruct outperforms existing instruction-following models such as InstructGPT by over 9% on our benchmark despite being an order of magnitude smaller. We further analyze generalization as a function of various scaling parameters, such as the number of observed tasks, the number of instances per task, and model sizes. We hope our dataset and model facilitate future progress towards more general-purpose NLP models.
Twitter serves as a powerful tool for self-expression among the disabled people. To understand how disabled people in India use Twitter, we introduce a manually annotated corpus #DisabledOnIndianTwitter comprising of 2,384 tweets posted by 27 female and 15 male users. These users practice diverse professions and engage in varied online discourses on disability in India. To examine patterns in their Twitter use, we propose a novel hierarchical annotation taxonomy to classify the tweets into various themes including discrimination, advocacy, and self-identification. Using these annotations, we benchmark the corpus leveraging state-of-the-art classifiers. Finally through a mixed-methods analysis on our annotated corpus, we reveal stark differences in self-expression between male and female disabled users on Indian Twitter.
In this work, we conduct a quantitative linguistic analysis of the language usage patterns of multilingual peer supporters in two health-focused WhatsApp groups in Kenya comprising of youth living with HIV. Even though the language of communication for the group was predominantly English, we observe frequent use of Kiswahili, Sheng and code-mixing among the three languages. We present an analysis of language choice and its accommodation, different functions of code-mixing, and relationship between sentiment and code-mixing. To explore the effectiveness of off-the-shelf Language Technologies (LT) in such situations, we attempt to build a sentiment analyzer for this dataset. Our experiments demonstrate the challenges of developing LT and therefore effective interventions for such forums and languages. We provide recommendations for language resources that should be built to address these challenges.
The COVID-19 pandemic has brought out both the best and worst of language technology (LT). On one hand, conversational agents for information dissemination and basic diagnosis have seen widespread use, and arguably, had an important role in fighting against the pandemic. On the other hand, it has also become clear that such technologies are readily available for a handful of languages, and the vast majority of the global south is completely bereft of these benefits. What is the state of LT, especially conversational agents, for healthcare across the world’s languages? And, what would it take to ensure global readiness of LT before the next pandemic? In this paper, we try to answer these questions through survey of existing literature and resources, as well as through a rapid chatbot building exercise for 15 Asian and African languages with varying amount of resource-availability. The study confirms the pitiful state of LT even for languages with large speaker bases, such as Sinhala and Hausa, and identifies the gaps that could help us prioritize research and investment strategies in LT for healthcare.
Healthcare predictive analytics aids medical decision-making, diagnosis prediction and drug review analysis. Therefore, prediction accuracy is an important criteria which also necessitates robust predictive language models. However, the models using deep learning have been proven vulnerable towards insignificantly perturbed input instances which are less likely to be misclassified by humans. Recent efforts of generating adversaries using rule-based synonyms and BERT-MLMs have been witnessed in general domain, but the ever-increasing biomedical literature poses unique challenges. We propose BBAEG (Biomedical BERT-based Adversarial Example Generation), a black-box attack algorithm for biomedical text classification, leveraging the strengths of both domain-specific synonym replacement for biomedical named entities and BERT-MLM predictions, spelling variation and number replacement. Through automatic and human evaluation on two datasets, we demonstrate that BBAEG performs stronger attack with better language fluency, semantic coherence as compared to prior work.
In recent years, remote digital healthcare using online chats has gained momentum, especially in the Global South. Though prior work has studied interaction patterns in online (health) forums, such as TalkLife, Reddit and Facebook, there has been limited work in understanding interactions in small, close-knit community of instant messengers. In this paper, we propose a linguistic annotation framework to facilitate analysis of health-focused WhatsApp groups. The primary aim of the framework is to understand interpersonal relationships among peer supporters in order to help develop NLP solutions for remote patient care and reduce burden of overworked healthcare providers. Our framework consists of fine-grained peer support categorization and message-level sentiment tagging. Additionally, due to the prevalence of code-mixing in such groups, we incorporate word-level language annotations. We use the proposed framework to study two WhatsApp groups in Kenya for youth living with HIV, facilitated by a healthcare provider.
Eligibility criteria in the clinical trials specify the characteristics that a patient must or must not possess in order to be treated according to a standard clinical care guideline. As the process of manual eligibility determination is time-consuming, automatic structuring of the eligibility criteria into various semantic categories or aspects is the need of the hour. Existing methods use hand-crafted rules and feature-based statistical machine learning methods to dynamically induce semantic aspects. However, in order to deal with paucity of aspect-annotated clinical trials data, we propose a novel weakly-supervised co-training based method which can exploit a large pool of unlabeled criteria sentences to augment the limited supervised training data, and consequently enhance the performance. Experiments with 0.2M criteria sentences show that the proposed approach outperforms the competitive supervised baselines by 12% in terms of micro-averaged F1 score for all the aspects. Probing deeper into analysis, we observe domain-specific information boosts up the performance by a significant margin.
Traditional biomedical version of embeddings obtained from pre-trained language models have recently shown state-of-the-art results for relation extraction (RE) tasks in the medical domain. In this paper, we explore how to incorporate domain knowledge, available in the form of molecular structure of drugs, for predicting Drug-Drug Interaction from textual corpus. We propose a method, BERTChem-DDI, to efficiently combine drug embeddings obtained from the rich chemical structure of drugs (encoded in SMILES) along with off-the-shelf domain-specific BioBERT embedding-based RE architecture. Experiments conducted on the DDIExtraction 2013 corpus clearly indicate that this strategy improves other strong baselines architectures by 3.4% macro F1-score.
Entity linking (or Normalization) is an essential task in text mining that maps the entity mentions in the medical text to standard entities in a given Knowledge Base (KB). This task is of great importance in the medical domain. It can also be used for merging different medical and clinical ontologies. In this paper, we center around the problem of disease linking or normalization. This task is executed in two phases: candidate generation and candidate scoring. In this paper, we present an approach to rank the candidate Knowledge Base entries based on their similarity with disease mention. We make use of the Triplet Network for candidate ranking. While the existing methods have used carefully generated sieves and external resources for candidate generation, we introduce a robust and portable candidate generation scheme that does not make use of the hand-crafted rules. Experimental results on the standard benchmark NCBI disease dataset demonstrate that our system outperforms the prior methods by a significant margin.