This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we generate only three BibTeX files per volume, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
Event detection (ED) seeks to discover and classify event instances in plain texts. Previous methods for ED typically adopt supervised learning, requiring fully labeled and high-quality training data. However, in a real-world application, we may not obtain clean training data but only partially labeled one, which could substantially impede the learning process. In this work, we conduct a seminal study for learning with partial annotations for ED.We propose a new trigger localization formulation using contrastive learning to distinguish ground-truth triggers from contexts, showing a decent robustness for addressing partial annotation noise. Impressively, in an extreme scenario where more than 90% of events are unlabeled, our approach achieves an F1 score of over 60%.In addition, we re-annotate and make available two fully annotated subsets of ACE 2005 to serve as an unbiased benchmark for event detection. We hope our approach and data will inspire future studies on this vital yet understudied problem.
Document-level event argument extraction aims to identify event arguments beyond sentence level, where a significant challenge is to model long-range dependencies. Focusing on this challenge, we present a new chain reasoning paradigm for the task, which can generate decomposable first-order logic rules for reasoning. This paradigm naturally captures long-range interdependence due to the chains’ compositional nature, which also improves interpretability by explicitly modeling the reasoning process. We introduce T-norm fuzzy logic for optimization, which permits end-to-end learning and shows promise for integrating the expressiveness of logical reasoning with the generalization of neural networks. In experiments, we show that our approach outperforms previous methods by a significant margin on two standard benchmarks (over 6 points in F1).Moreover, it is data-efficient in low-resource scenarios and robust enough to defend against adversarial attacks.
Recently, the success of pre-training in text domain has been fully extended to vision, audio, and cross-modal scenarios. The proposed pre-training models of different modalities are showing a rising trend of homogeneity in their model structures, which brings the opportunity to implement different pre-training models within a uniform framework. In this paper, we present TencentPretrain, a toolkit supporting pre-training models of different modalities. The core feature of TencentPretrain is the modular design. The toolkit uniformly divides pre-training models into 5 components: embedding, encoder, target embedding, decoder, and target. As almost all of common modules are provided in each component, users can choose the desired modules from different components to build a complete pre-training model. The modular design enables users to efficiently reproduce existing pre-training models or build brand-new one. We test the toolkit on text, vision, and audio benchmarks and show that it can match the performance of the original implementations.
The latest industrial inference engines, such as FasterTransformer and TurboTransformers, have verified that half-precision floating point (FP16) and 8-bit integer (INT8) quantization can greatly improve model inference speed. However, the existing INT8 quantization methods are too complicated, and improper usage will lead to model performance damage greatly. In this paper, we develop a toolkit for users to easily quantize their models for inference, in which Self-Adaptive Mixed-Precision (SAMP) is proposed to automatically control quantization rate by a mixed-precision architecture to balance model accuracy and efficiency. Experimental results show that our SAMP toolkit has a higher speedup than PyTorch and FasterTransformer while ensuring the required accuracy. In addition, SAMP is based on a modular design, decoupling the tokenizer, embedding, encoder and target layers, which allows users to handle various downstream tasks and can be seamlessly integrated into PyTorch.
Catastrophic forgetting is a challenge for model deployment in industrial real-time systems, which requires the model to quickly master a new task without forgetting the old one. Continual learning aims to solve this problem; however, it usually updates all the model parameters, resulting in extensive training times and the inability to deploy quickly. To address this challenge, we propose a parameter-efficient continual learning framework, in which efficient parameters are selected through an offline parameter selection strategy and then trained using an online regularization method. In our framework, only a few parameters need to be updated, which not only alleviates catastrophic forgetting, but also allows the model to be saved with the changed parameters instead of all parameters. Extensive experiments are conducted to examine the effectiveness of our proposal. We believe this paper will provide useful insights and experiences on developing deep learning-based online real-time systems.
Previous studies have proved that cross-lingual knowledge distillation can significantly improve the performance of pre-trained models for cross-lingual similarity matching tasks. However, the student model needs to be large in this operation. Otherwise, its performance will drop sharply, thus making it impractical to be deployed to memory-limited devices. To address this issue, we delve into cross-lingual knowledge distillation and propose a multi-stage distillation framework for constructing a small-size but high-performance cross-lingual model. In our framework, contrastive learning, bottleneck, and parameter recurrent strategies are delicately combined to prevent performance from being compromised during the compression process. The experimental results demonstrate that our method can compress the size of XLM-R and MiniLM by more than 50%, while the performance is only reduced by about 1%.
Existing zero-shot cross-lingual transfer methods rely on parallel corpora or bilingual dictionaries, which are expensive and impractical for low-resource languages. To disengage from these dependencies, researchers have explored training multilingual models on English-only resources and transferring them to low-resource languages. However, its effect is limited by the gap between embedding clusters of different languages. To address this issue, we propose Embedding-Push, Attention-Pull, and Robust targets to transfer English embeddings to virtual multilingual embeddings without semantic loss, thereby improving cross-lingual transferability. Experimental results on mBERT and XLM-R demonstrate that our method significantly outperforms previous works on the zero-shot cross-lingual text classification task and can obtain a better multilingual alignment.
One key component in text-to-SQL is to predict the comparison relations between columns and their values. To the best of our knowledge, no existing models explicitly introduce external common knowledge to address this problem, thus their capabilities of predicting comparison relations are limited beyond training data. In this paper, we propose to leverage adjective-noun phrasing knowledge mined from the web to predict the comparison relations in text-to-SQL. Experimental results on both the original and the re-split Spider dataset show that our approach achieves significant improvement over state-of-the-art methods on comparison relation prediction.
Context-dependent semantic parsing has proven to be an important yet challenging task. To leverage the advances in context-independent semantic parsing, we propose to perform follow-up query analysis, aiming to restate context-dependent natural language queries with contextual information. To accomplish the task, we propose STAR, a novel approach with a well-designed two-phase process. It is parser-independent and able to handle multifarious follow-up scenarios in different domains. Experiments on the FollowUp dataset show that STAR outperforms the state-of-the-art baseline by a large margin of nearly 8%. The superiority on parsing results verifies the feasibility of follow-up query analysis. We also explore the extensibility of STAR on the SQA dataset, which is very promising.