This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we generate only three BibTeX files per volume, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
Large-scale pretrained language models (LLMs), such as ChatGPT and GPT4, have shown strong abilities in multilingual translation, without being explicitly trained on parallel corpora. It is intriguing how the LLMs obtain their ability to carry out translation instructions for different languages. In this paper, we present a detailed analysis by finetuning a multilingual pretrained language model, XGLM-7.5B, to perform multilingual translation following given instructions. Firstly, we show that multilingual LLMs have stronger translation abilities than previously demonstrated. For a certain language, the translation performance depends on its similarity to English and the amount of data used in the pretraining phase. Secondly, we find that LLMs’ ability to carry out translation instructions relies on the understanding of translation instructions and the alignment among different languages. With multilingual finetuning with translation instructions, LLMs could learn to perform the translation task well even for those language pairs unseen during the instruction tuning phase.
In this paper, we re-examine the Markov property in the context of neural machine translation. We design a Markov Autoregressive Transformer (MAT) and undertake a comprehensive assessment of its performance across four WMT benchmarks. Our findings indicate that MAT with an order larger than 4 can generate translations with quality on par with that of conventional autoregressive transformers. In addition, counter-intuitively, we also find that the advantages of utilizing a higher-order MAT do not specifically contribute to the translation of longer sentences.
Previously, non-autoregressive models were widely recognized as being superior in generation efficiency but inferior in generation quality due to the challenges of modeling multiple target modalities.To enhance the multi-modality modeling ability, we propose the diffusion glancing transformer, which employs a modality diffusion process and residual glancing sampling.The modality diffusion process is a discrete process that interpolates the multi-modal distribution along the decoding steps, and the residual glancing sampling approach guides the model to continuously learn the remaining modalities across the layers. Experimental results on various machine translation and text generation benchmarks demonstrate that DIFFGLAT achieves better generation accuracy while maintaining fast decoding speed compared with both autoregressive and non-autoregressive models.
Spoken language glossification (SLG) aims to translate the spoken language text into the sign language gloss, i.e., a written record of sign language. In this work, we present a framework named Semi-Supervised Spoken Language Glossification (S3LG) for SLG. To tackle the bottleneck of limited parallel data in SLG, our S3LG incorporates large-scale monolingual spoken language text into SLG training. The proposed framework follows the self-training structure that iteratively annotates and learns from pseudo labels. Considering the lexical similarity and syntactic difference between sign language and spoken language, our S3LG adopts both the rule-based heuristic and model-based approach for auto-annotation. During training, we randomly mix these complementary synthetic datasets and mark their differences with a special token. As the synthetic data may be less quality, the S3LG further leverages consistency regularization to reduce the negative impact of noise in the synthetic data. Extensive experiments are conducted on public benchmarks to demonstrate the effectiveness of the S3LG. Our code is available at https://github.com/yaohj11/S3LG.
Pinyin input method engine (IME) refers to the transformation tool from pinyin sequence to Chinese characters, which is widely used on mobile phone applications. Due to the homophones, Pinyin IME suffers from the one-to-many mapping problem in the process of pinyin sequences to Chinese characters. To solve the above issue, this paper makes the first exploration to leverage an effective conditional variational mechanism (CVM) for pinyin IME. However, to ensure the stable and smooth operation of Pinyin IME under low-resource conditions (e.g., on offline mobile devices), we should balance diversity, accuracy, and efficiency with CVM, which is still challenging. To this end, we employ a novel strategy that simplifies the complexity of semantic encoding by facilitating the interaction between pinyin and the Chinese character information during the construction of continuous latent variables. Concurrently, the accuracy of the outcomes is enhanced by capitalizing on the discrete latent variables. Experimental results demonstrate the superior performance of our method.
Implicit discourse relation recognition (IDRR) remains a challenging task in discourse analysis due to the absence of connectives. Most existing methods utilize one-hot labels as the sole optimization target, ignoring the internal association among connectives. Besides, these approaches spend lots of effort on template construction, negatively affecting the generalization capability. To address these problems,we propose a novel Connective Prediction via Knowledge Distillation (CP-KD) approach to instruct large-scale pre-trained language models (PLMs) mining the latent correlations between connectives and discourse relations, which is meaningful for IDRR. Experimental results on the PDTB 2.0/3.0 and CoNLL2016 datasets show that our method significantly outperforms the state-of-the-art models on coarse-grained and fine-grained discourse relations. Moreover, our approach can be transferred to explicit discourse relation recognition(EDRR) and achieve acceptable performance.
Pre-trained Language Models (PLMs) may be poisonous with backdoors or bias injected by the suspicious attacker during the fine-tuning process. A core challenge of purifying potentially poisonous PLMs is precisely finding poisonous dimensions. To settle this issue, we propose the Fine-purifying approach, which utilizes the diffusion theory to study the dynamic process of fine-tuning for finding potentially poisonous dimensions. According to the relationship between parameter drifts and Hessians of different dimensions, we can detect poisonous dimensions with abnormal dynamics, purify them by resetting them to clean pre-trained weights, and then fine-tune the purified weights on a small clean dataset. To the best of our knowledge, we are the first to study the dynamics guided by the diffusion theory for safety or defense purposes. Experimental results validate the effectiveness of Fine-purifying even with a small clean dataset.
In this work, we argue that non-autoregressive (NAR) sequence generative models can equivalently be regarded as an iterative refinement process towards the target sequence, implying an underlying dynamical system of NAR model: z = f (z, x) → y. In such a way, the optimal prediction of a NAR model should be the equilibrium state of its dynamics if given infinitely many iterations. However, this is infeasible in practice due to limited computational and memory budgets. To this end, we propose DEQNAR to directly solve for the equilibrium state of NAR models based on deep equilibrium networks (Bai et al., 2019) with black-box root-finding solvers and back-propagate through the equilibrium point via implicit differentiation with constant memory. We conduct extensive experiments on four WMT machine translation benchmarks. Our main findings show that DEQNAR can indeed converge to a more accurate prediction and is a general-purpose framework that consistently helps yield substantial improvement for several strong NAR backbones.
Non-autoregressive translation (NAT) models achieve comparable performance and superior speed compared to auto-regressive translation (AT) models in the context of sentence-level machine translation (MT). However, their abilities are unexplored in document-level MT, hindering their usage in real scenarios. In this paper, we conduct a comprehensive examination of typical NAT models in the context of document-level MT and further propose a simple but effective design of sentence alignment between source and target. Experiments show that NAT models achieve high acceleration on documents, and sentence alignment significantly enhances their performance. However, current NAT models still have a significant performance gap compared to their AT counterparts. Further investigation reveals that NAT models suffer more from the multi-modality and misalignment issues in the context of document-level MT, and current NAT models struggle with exploiting document context and handling discourse phenomena. We delve into these challenges and provide our code at https://github.com/baoguangsheng/nat-on-doc.
In-context learning (ICL) emerges as a promising capability of large language models (LLMs) by providing them with demonstration examples to perform diverse tasks. However, the underlying mechanism of how LLMs learn from the provided context remains under-explored. In this paper, we investigate the working mechanism of ICL through an information flow lens. Our findings reveal that label words in the demonstration examples function as anchors: (1) semantic information aggregates into label word representations during the shallow computation layers’ processing; (2) the consolidated information in label words serves as a reference for LLMs’ final predictions. Based on these insights, we introduce an anchor re-weighting method to improve ICL performance, a demonstration compression technique to expedite inference, and an analysis framework for diagnosing ICL errors in GPT2-XL. The promising applications of our findings again validate the uncovered ICL working mechanism and pave the way for future studies.
Pre-training on large-scale open-domain dialogue data can substantially improve the performance of dialogue models. However, the pre-trained dialogue model’s ability to utilize long-range context is limited due to the scarcity of long-turn dialogue sessions. Most dialogues in existing pre-training corpora contain fewer than three turns of dialogue. To alleviate this issue, we propose the Retrieve, Reorganize and Rescale framework (Re3Dial), which can automatically construct billion-scale long-turn dialogues by reorganizing existing short-turn ones. Given a short-turn session, Re3Dial first employs a session retriever to retrieve coherent consecutive sessions. To this end, we train the retriever to capture semantic and discourse relations within multi-turn dialogues through contrastive training. Next, Re3Dial samples a session from retrieved results following a diversity sampling strategy, which is designed to penalize repetitive or generic sessions. A longer session is then derived by concatenating the original session and the sampled session. By repeating the above process, Re3Dial can yield a coherent long-turn dialogue. Extensive experiments on multiple multi-turn dialogue benchmarks demonstrate that Re3Dial significantly improves the dialogue model’s ability to utilize long-range context and thus generate more sensible and informative responses. Finally, we build a toolkit for efficiently rescaling conversations with Re3Dial, which enables us to construct a corpus containing 1B Chinese dialogue sessions with 11.3 turns on average (5X longer than the original corpus). We will release our retriever model, toolkit, and data for public use.
Dialogue comprehension and generation are vital to the success of open-domain dialogue systems. Although pre-trained generative conversation models have made significant progress in generating fluent responses, people have difficulty judging whether they understand and efficiently model the contextual information of the conversation. In this study, we propose a Multi-Source Probing (MSP) method to probe the dialogue comprehension abilities of open-domain dialogue models. MSP aggregates features from multiple sources to accomplish diverse task goals and conducts downstream tasks in a generative manner that is consistent with dialogue model pre-training to leverage model capabilities. We conduct probing experiments on seven tasks that require various dialogue comprehension skills, based on the internal representations encoded by dialogue models. Experimental results show that open-domain dialogue models can encode semantic information in the intermediate hidden states, which facilitates dialogue comprehension tasks. Models of different scales and structures possess different conversational understanding capabilities. Our findings encourage a comprehensive evaluation and design of open-domain dialogue models.
Many natural language processing tasks involve text spans and thus high-quality span representations are needed to enhance neural approaches to these tasks. Most existing methods of span representation are based on simple derivations (such as max-pooling) from word representations and do not utilize compositional structures of natural language. In this paper, we aim to improve representations of constituent spans using a novel hypertree neural networks (HTNN) that is structured with constituency parse trees. Each node in the HTNN represents a constituent of the input sentence and each hyperedge represents a composition of smaller child constituents into a larger parent constituent. In each update iteration of the HTNN, the representation of each constituent is computed based on all the hyperedges connected to it, thus incorporating both bottom-up and top-down compositional information. We conduct comprehensive experiments to evaluate HTNNs against other span representation models and the results show the effectiveness of HTNN.
Existing reference-free metrics have obvious limitations for evaluating controlled text generation models. Unsupervised metrics can only provide a task-agnostic evaluation result which correlates weakly with human judgments, whereas supervised ones may overfit task-specific data with poor generalization ability to other datasets. In this paper, we propose an unsupervised reference-free metric called CTRLEval, which evaluates controlled text generation from different aspects by formulating each aspect into multiple text infilling tasks. On top of these tasks, the metric assembles the generation probabilities from a pre-trained language model without any model training. Experimental results show that our metric has higher correlations with human judgments than other baselines, while obtaining better generalization of evaluating generated texts from different models and with different qualities.
Currently, masked language modeling (e.g., BERT) is the prime choice to learn contextualized representations. Due to the pervasiveness, it naturally raises an interesting question: how do masked language models (MLMs) learn contextual representations? In this work, we analyze the learning dynamics of MLMs and find that it adopts sampled embeddings as anchors to estimate and inject contextual semantics to representations, which limits the efficiency and effectiveness of MLMs. To address these problems, we propose TACO, a simple yet effective representation learning approach to directly model global semantics. To be specific, TACO extracts and aligns contextual semantics hidden in contextualized representations to encourage models to attend global semantics when generating contextualized representations. Experiments on the GLUE benchmark show that TACO achieves up to 5x speedup and up to 1.2 points average improvement over MLM.
Recently, parallel text generation has received widespread attention due to its success in generation efficiency. Although many advanced techniques are proposed to improve its generation quality, they still need the help of an autoregressive model for training to overcome the one-to-many multi-modal phenomenon in the dataset, limiting their applications. In this paper, we propose GLAT, which employs the discrete latent variables to capture word categorical information and invoke an advanced curriculum learning technique, alleviating the multi-modality problem. Experiment results show that our method outperforms strong baselines without the help of an autoregressive model, which further broadens the application scenarios of the parallel decoding paradigm.
Even though the large-scale language models have achieved excellent performances, they suffer from various adversarial attacks.A large body of defense methods has been proposed. However, they are still limited due to redundant attack search spaces and the inability to defend against various types of attacks.In this work, we present a novel fine-tuning approach called RObust SEletive fine-tuning (ROSE) to address this issue.ROSE conducts selective updates when adapting pre-trained models to downstream tasks, filtering out invaluable and unrobust updates of parameters.Specifically, we propose two strategies: the first-order and second-order ROSE for selecting target robust parameters.The experimental results show that ROSE achieves significant improvements in adversarial robustness on various downstream NLP tasks, and the ensemble method even surpasses both variants above.Furthermore, ROSE can be easily incorporated into existing fine-tuning methods to improve their adversarial robustness further.The empirical analysis confirms that ROSE eliminates unrobust spurious updates during fine-tuning, leading to solutions corresponding to flatter and wider optima than the conventional method.Code is available at https://github.com/jiangllan/ROSE.
This paper does not aim at introducing a novel model for document-level neural machine translation. Instead, we head back to the original Transformer model and hope to answer the following question: Is the capacity of current models strong enough for document-level translation? Interestingly, we observe that the original Transformer with appropriate training techniques can achieve strong results for document translation, even with a length of 2000 words. We evaluate this model and several recent approaches on nine document-level datasets and two sentence-level datasets across six languages. Experiments show that document-level Transformer models outperforms sentence-level ones and many previous methods in a comprehensive set of metrics, including BLEU, four lexical indices, three newly proposed assistant linguistic indicators, and human evaluation.
Dialogue safety problems severely limit the real-world deployment of neural conversational models and have attracted great research interests recently. However, dialogue safety problems remain under-defined and the corresponding dataset is scarce. We propose a taxonomy for dialogue safety specifically designed to capture unsafe behaviors in human-bot dialogue settings, with focuses on context-sensitive unsafety, which is under-explored in prior works. To spur research in this direction, we compile DiaSafety, a dataset with rich context-sensitive unsafe examples. Experiments show that existing safety guarding tools fail severely on our dataset. As a remedy, we train a dialogue safety classifier to provide a strong baseline for context-sensitive dialogue unsafety detection. With our classifier, we perform safety evaluations on popular conversational models and show that existing dialogue systems still exhibit concerning context-sensitive safety problems.
The ability to recognize analogies is fundamental to human cognition. Existing benchmarks to test word analogy do not reveal the underneath process of analogical reasoning of neural models. Holding the belief that models capable of reasoning should be right for the right reasons, we propose a first-of-its-kind Explainable Knowledge-intensive Analogical Reasoning benchmark (E-KAR). Our benchmark consists of 1,655 (in Chinese) and 1,251 (in English) problems sourced from the Civil Service Exams, which require intensive background knowledge to solve. More importantly, we design a free-text explanation scheme to explain whether an analogy should be drawn, and manually annotate them for each and every question and candidate answer. Empirical results suggest that this benchmark is very challenging for some state-of-the-art models for both explanation generation and analogical question answering tasks, which invites further research in this area.
We introduce MTG, a new benchmark suite for training and evaluating multilingual text generation. It is the first-proposed multilingual multiway text generation dataset with the largest human-annotated data (400k). It includes four generation tasks (story generation, question generation, title generation and text summarization) across five languages (English, German, French, Spanish and Chinese). The multiway setup enables testing knowledge transfer capabilities for a model across languages and tasks. Using MTG, we train and analyze several popular multilingual generation models from different aspects. Our benchmark suite fosters model performance enhancement with more human-annotated parallel data. It provides comprehensive evaluations with diverse generation scenarios. Code and data are available at https://github.com/zide05/MTG.
Due to the absence of connectives, implicit discourse relation recognition (IDRR) is still a challenging and crucial task in discourse analysis. Most of the current work adopted multitask learning to aid IDRR through explicit discourse relation recognition (EDRR) or utilized dependencies between discourse relation labels to constrain model predictions. But these methods still performed poorly on fine-grained IDRR and even utterly misidentified on most of the few-shot discourse relation classes. To address these problems, we propose a novel Prompt-based Connective Prediction (PCP) method for IDRR. Our method instructs large-scale pre-trained models to use knowledge relevant to discourse relation and utilizes the strong correlation between connectives and discourse relation to help the model recognize implicit discourse relations. Experimental results show that our method surpasses the current state-of-the-art model and achieves significant improvements on those fine-grained few-shot discourse relation. Moreover, our approach is able to be transferred to EDRR and obtain acceptable results. Our code is released in https://github.com/zh-i9/PCP-for-IDRR.
Many joint entity relation extraction models setup two separated label spaces for the two sub-tasks (i.e., entity detection and relation classification). We argue that this setting may hinder the information interaction between entities and relations. In this work, we propose to eliminate the different treatment on the two sub-tasks’ label spaces. The input of our model is a table containing all word pairs from a sentence. Entities and relations are represented by squares and rectangles in the table. We apply a unified classifier to predict each cell’s label, which unifies the learning of two sub-tasks. For testing, an effective (yet fast) approximate decoder is proposed for finding squares and rectangles from tables. Experiments on three benchmarks (ACE04, ACE05, SciERC) show that, using only half the number of parameters, our model achieves competitive accuracy with the best extractor, and is faster.
Recent work on non-autoregressive neural machine translation (NAT) aims at improving the efficiency by parallel decoding without sacrificing the quality. However, existing NAT methods are either inferior to Transformer or require multiple decoding passes, leading to reduced speedup. We propose the Glancing Language Model (GLM) for single-pass parallel generation models. With GLM, we develop Glancing Transformer (GLAT) for machine translation. With only single-pass parallel decoding, GLAT is able to generate high-quality translation with 8×-15× speedup. Note that GLAT does not modify the network architecture, which is a training method to learn word interdependency. Experiments on multiple WMT language directions show that GLAT outperforms all previous single pass non-autoregressive methods, and is nearly comparable to Transformer, reducing the gap to 0.25-0.9 BLEU points.
The choice of token vocabulary affects the performance of machine translation. This paper aims to figure out what is a good vocabulary and whether we can find the optimal vocabulary without trial training. To answer these questions, we first provide an alternative understanding of vocabulary from the perspective of information theory. It motivates us to formulate the quest of vocabularization – finding the best token dictionary with a proper size – as an optimal transport (OT) problem. We propose VOLT, a simple and efficient solution without trial training. Empirical results show that VOLT beats widely-used vocabularies in diverse scenarios, including WMT-14 English-German translation, TED bilingual translation, and TED multilingual translation. For example, VOLT achieves 70% vocabulary size reduction and 0.5 BLEU gain on English-German translation. Also, compared to BPE-search, VOLT reduces the search time from 384 GPU hours to 30 GPU hours on English-German translation. Codes are available at https://github.com/Jingjing-NLP/VOLT.
Dialog topic management and background knowledge selection are essential factors for the success of knowledge-grounded open-domain conversations. However, existing models are primarily performed with symmetric knowledge bases or stylized with pre-defined roles between conversational partners, while people usually have their own knowledge before a real chit-chat. To address this problem, we propose a dynamic knowledge graph-based topical conversation model (DKGT). Given a dialog history context, our model first builds knowledge graphs from the context as an imitation of human’s ability to form logical relationships between known and unknown topics during a conversation. This logical information will be fed into a topic predictor to promote topic management, then facilitate background knowledge selection and response generation. To the best of our knowledge, this is the first attempt to dynamically form knowledge graphs between chatting topics to assist dialog topic management during a conversation. Experimental results manifest that our model can properly schedule conversational topics and pick suitable knowledge to generate informative responses comparing to several strong baselines.
Current state-of-the-art systems for joint entity relation extraction (Luan et al., 2019; Wad-den et al., 2019) usually adopt the multi-task learning framework. However, annotations for these additional tasks such as coreference resolution and event extraction are always equally hard (or even harder) to obtain. In this work, we propose a pre-training method ENPAR to improve the joint extraction performance. ENPAR requires only the additional entity annotations that are much easier to collect. Unlike most existing works that only consider incorporating entity information into the sentence encoder, we further utilize the entity pair information. Specifically, we devise four novel objectives,i.e., masked entity typing, masked entity prediction, adversarial context discrimination, and permutation prediction, to pre-train an entity encoder and an entity pair encoder. Comprehensive experiments show that the proposed pre-training method achieves significant improvement over BERT on ACE05, SciERC, and NYT, and outperforms current state-of-the-art on ACE05.
This paper describes the Volctrans’ submission to the WMT21 news translation shared task for German->English translation. We build a parallel (i.e., non-autoregressive) translation system using the Glancing Transformer, which enables fast and accurate parallel decoding in contrast to the currently prevailing autoregressive models. To the best of our knowledge, this is the first parallel translation system that can be scaled to such a practical scenario like WMT competition. More importantly, our parallel translation system achieves the best BLEU score (35.0) on German->English translation task, outperforming all strong autoregressive counterparts.
Existing conversational systems are mostly agent-centric, which assumes the user utterances will closely follow the system ontology. However, in real-world scenarios, it is highly desirable that users can speak freely and naturally. In this work, we attempt to build a user-centric dialogue system for conversational recommendation. As there is no clean mapping for a user’s free form utterance to an ontology, we first model the user preferences as estimated distributions over the system ontology and map the user’s utterances to such distributions. Learning such a mapping poses new challenges on reasoning over various types of knowledge, ranging from factoid knowledge, commonsense knowledge to the users’ own situations. To this end, we build a new dataset named NUANCED that focuses on such realistic settings, with 5.1k dialogues, 26k turns of high-quality user responses. We conduct experiments, showing both the usefulness and challenges of our problem setting. We believe NUANCED can serve as a valuable resource to push existing research from the agent-centric system to the user-centric system. The code and data are publicly available.
Document-level relation extraction aims to identify relations between entities in a whole document. Prior efforts to capture long-range dependencies have relied heavily on implicitly powerful representations learned through (graph) neural networks, which makes the model less transparent. To tackle this challenge, in this paper, we propose LogiRE, a novel probabilistic model for document-level relation extraction by learning logic rules. LogiRE treats logic rules as latent variables and consists of two modules: a rule generator and a relation extractor. The rule generator is to generate logic rules potentially contributing to final predictions, and the relation extractor outputs final predictions based on the generated logic rules. Those two modules can be efficiently optimized with the expectation-maximization (EM) algorithm. By introducing logic rules into neural networks, LogiRE can explicitly capture long-range dependencies as well as enjoy better interpretation. Empirical results show that significantly outperforms several strong baselines in terms of relation performance and logical consistency. Our code is available at https://github.com/rudongyu/LogiRE.
Generating informative and appropriate responses is challenging but important for building human-like dialogue systems. Although various knowledge-grounded conversation models have been proposed, these models have limitations in utilizing knowledge that infrequently occurs in the training data, not to mention integrating unseen knowledge into conversation generation. In this paper, we propose an Entity-Agnostic Representation Learning (EARL) method to introduce knowledge graphs to informative conversation generation. Unlike traditional approaches that parameterize the specific representation for each entity, EARL utilizes the context of conversations and the relational structure of knowledge graphs to learn the category representation for entities, which is generalized to incorporating unseen entities in knowledge graphs into conversation generation. Automatic and manual evaluations demonstrate that our model can generate more informative, coherent, and natural responses than baseline models.
We participate in the WMT 2020 shared newstranslation task on Chinese→English. Our system is based on the Transformer (Vaswaniet al., 2017a) with effective variants and the DTMT (Meng and Zhang, 2019) architecture. In our experiments, we employ data selection, several synthetic data generation approaches (i.e., back-translation, knowledge distillation, and iterative in-domain knowledge transfer), advanced finetuning approaches and self-bleu based model ensemble. Our constrained Chinese→English system achieves 36.9 case-sensitive BLEU score, which is thehighest among all submissions.
We propose UPSA, a novel approach that accomplishes Unsupervised Paraphrasing by Simulated Annealing. We model paraphrase generation as an optimization problem and propose a sophisticated objective function, involving semantic similarity, expression diversity, and language fluency of paraphrases. UPSA searches the sentence space towards this objective by performing a sequence of local editing. We evaluate our approach on various datasets, namely, Quora, Wikianswers, MSCOCO, and Twitter. Extensive results show that UPSA achieves the state-of-the-art performance compared with previous unsupervised methods in terms of both automatic and human evaluations. Further, our approach outperforms most existing domain-adapted supervised models, showing the generalizability of UPSA.
It has been a common approach to pre-train a language model on a large corpus and fine-tune it on task-specific data. In practice, we observe that fine-tuning a pre-trained model on a small dataset may lead to over- and/or under-estimate problem. In this paper, we propose MC-Tailor, a novel method to alleviate the above issue in text generation tasks by truncating and transferring the probability mass from over-estimated regions to under-estimated ones. Experiments on a variety of text generation datasets show that MC-Tailor consistently and significantly outperforms the fine-tuning approach.
The research of knowledge-driven conversational systems is largely limited due to the lack of dialog data which consists of multi-turn conversations on multiple topics and with knowledge annotations. In this paper, we propose a Chinese multi-domain knowledge-driven conversation dataset, KdConv, which grounds the topics in multi-turn conversations to knowledge graphs. Our corpus contains 4.5K conversations from three domains (film, music, and travel), and 86K utterances with an average turn number of 19.0. These conversations contain in-depth discussions on related topics and natural transition between multiple topics. To facilitate the following research on this corpus, we provide several benchmark models. Comparative results show that the models can be enhanced by introducing background knowledge, yet there is still a large space for leveraging knowledge to model multi-turn conversations for further research. Results also show that there are obvious performance differences between different domains, indicating that it is worth further explore transfer learning and domain adaptation. The corpus and benchmark models are publicly available.
This paper proposes the building of Xiaomingbot, an intelligent, multilingual and multimodal software robot equipped with four inte- gral capabilities: news generation, news translation, news reading and avatar animation. Its system summarizes Chinese news that it automatically generates from data tables. Next, it translates the summary or the full article into multiple languages, and reads the multi- lingual rendition through synthesized speech. Notably, Xiaomingbot utilizes a voice cloning technology to synthesize the speech trained from a real person’s voice data in one input language. The proposed system enjoys several merits: it has an animated avatar, and is able to generate and read multilingual news. Since it was put into practice, Xiaomingbot has written over 600,000 articles, and gained over 150,000 followers on social media platforms.
Active learning for sentence understanding aims at discovering informative unlabeled data for annotation and therefore reducing the demand for labeled data. We argue that the typical uncertainty sampling method for active learning is time-consuming and can hardly work in real-time, which may lead to ineffective sample selection. We propose adversarial uncertainty sampling in discrete space (AUSDS) to retrieve informative unlabeled samples more efficiently. AUSDS maps sentences into latent space generated by the popular pre-trained language models, and discover informative unlabeled text samples for annotation via adversarial attack. The proposed approach is extremely efficient compared with traditional uncertainty sampling with more than 10x speedup. Experimental results on five datasets show that AUSDS outperforms strong baselines on effectiveness.
We investigate the following question for machine translation (MT): can we develop a single universal MT model to serve as the common seed and obtain derivative and improved models on arbitrary language pairs? We propose mRASP, an approach to pre-train a universal multilingual neural machine translation model. Our key idea in mRASP is its novel technique of random aligned substitution, which brings words and phrases with similar meanings across multiple languages closer in the representation space. We pre-train a mRASP model on 32 language pairs jointly with only public datasets. The model is then fine-tuned on downstream language pairs to obtain specialized MT models. We carry out extensive experiments on 42 translation directions across a diverse settings, including low, medium, rich resource, and as well as transferring to exotic language pairs. Experimental results demonstrate that mRASP achieves significant performance improvement compared to directly training on those target pairs. It is the first time to verify that multiple lowresource language pairs can be utilized to improve rich resource MT. Surprisingly, mRASP is even able to improve the translation quality on exotic languages that never occur in the pretraining corpus. Code, data, and pre-trained models are available at https://github.com/linzehui/mRASP.
Pre-trained contextual representations like BERT have achieved great success in natural language processing. However, the sentence embeddings from the pre-trained language models without fine-tuning have been found to poorly capture semantic meaning of sentences. In this paper, we argue that the semantic information in the BERT embeddings is not fully exploited. We first reveal the theoretical connection between the masked language model pre-training objective and the semantic similarity task theoretically, and then analyze the BERT sentence embeddings empirically. We find that BERT always induces a non-smooth anisotropic semantic space of sentences, which harms its performance of semantic similarity. To address this issue, we propose to transform the anisotropic sentence embedding distribution to a smooth and isotropic Gaussian distribution through normalizing flows that are learned with an unsupervised objective. Experimental results show that our proposed BERT-flow method obtains significant performance gains over the state-of-the-art sentence embeddings on a variety of semantic textual similarity tasks. The code is available at https://github.com/bohanli/BERT-flow.
Non-autoregressive translation models (NAT) have achieved impressive inference speedup. A potential issue of the existing NAT algorithms, however, is that the decoding is conducted in parallel, without directly considering previous context. In this paper, we propose an imitation learning framework for non-autoregressive machine translation, which still enjoys the fast translation speed but gives comparable translation performance compared to its auto-regressive counterpart. We conduct experiments on the IWSLT16, WMT14 and WMT16 datasets. Our proposed model achieves a significant speedup over the autoregressive models, while keeping the translation quality comparable to the autoregressive models. By sampling sentence length in parallel at inference time, we achieve the performance of 31.85 BLEU on WMT16 Ro→En and 30.68 BLEU on IWSLT16 En→De.
Efficiently building an adversarial attacker for natural language processing (NLP) tasks is a real challenge. Firstly, as the sentence space is discrete, it is difficult to make small perturbations along the direction of gradients. Secondly, the fluency of the generated examples cannot be guaranteed. In this paper, we propose MHA, which addresses both problems by performing Metropolis-Hastings sampling, whose proposal is designed with the guidance of gradients. Experiments on IMDB and SNLI show that our proposed MHAoutperforms the baseline model on attacking capability. Adversarial training with MHA also leads to better robustness and performance.
Variational auto-encoders (VAEs) are widely used in natural language generation due to the regularization of the latent space. However, generating sentences from the continuous latent space does not explicitly model the syntactic information. In this paper, we propose to generate sentences from disentangled syntactic and semantic spaces. Our proposed method explicitly models syntactic information in the VAE’s latent space by using the linearized tree sequence, leading to better performance of language generation. Additionally, the advantage of sampling in the disentangled syntactic and semantic latent spaces enables us to perform novel applications, such as the unsupervised paraphrase generation and syntax transfer generation. Experimental results show that our proposed model achieves similar or better performance in various tasks, compared with state-of-the-art related work.
Text-based question answering (TBQA) has been studied extensively in recent years. Most existing approaches focus on finding the answer to a question within a single paragraph. However, many difficult questions require multiple supporting evidence from scattered text among two or more documents. In this paper, we propose Dynamically Fused Graph Network (DFGN), a novel method to answer those questions requiring multiple scattered evidence and reasoning over them. Inspired by human’s step-by-step reasoning behavior, DFGN includes a dynamic fusion layer that starts from the entities mentioned in the given query, explores along the entity graph dynamically built from the text, and gradually finds relevant supporting entities from the given documents. We evaluate DFGN on HotpotQA, a public TBQA dataset requiring multi-hop reasoning. DFGN achieves competitive results on the public board. Furthermore, our analysis shows DFGN produces interpretable reasoning chains.
The variational autoencoder (VAE) imposes a probabilistic distribution (typically Gaussian) on the latent space and penalizes the Kullback-Leibler (KL) divergence between the posterior and prior. In NLP, VAEs are extremely difficult to train due to the problem of KL collapsing to zero. One has to implement various heuristics such as KL weight annealing and word dropout in a carefully engineered manner to successfully train a VAE for text. In this paper, we propose to use the Wasserstein autoencoder (WAE) for probabilistic sentence generation, where the encoder could be either stochastic or deterministic. We show theoretically and empirically that, in the original WAE, the stochastically encoded Gaussian distribution tends to become a Dirac-delta function, and we propose a variant of WAE that encourages the stochasticity of the encoder. Experimental results show that the latent space learned by WAE exhibits properties of continuity and smoothness as in VAEs, while simultaneously achieving much higher BLEU scores for sentence reconstruction.
This tutorial provides a comprehensive guide to the process of discreteness in neural NLP.As a gentle start, we will briefly introduce the background of deep learning based NLP, where we point out the ubiquitous discreteness of natural language and its challenges in neural information processing. Particularly, we will focus on how such discreteness plays a role in the input space, the latent space, and the output space of a neural network. In each part, we will provide examples, discuss machine learning techniques, as well as demonstrate NLP applications.
Text attribute transfer is modifying certain linguistic attributes (e.g. sentiment, style, author-ship, etc.) of a sentence and transforming them from one type to another. In this paper, we aim to analyze and interpret what is changed during the transfer process. We start from the observation that in many existing models and datasets, certain words within a sentence play important roles in determining the sentence attribute class. These words are referred as the Pivot Words. Based on these pivot words, we propose a lexical analysis framework, the Pivot Analysis, to quantitatively analyze the effects of these words in text attribute classification and transfer. We apply this framework to existing datasets and models and show that: (1) the pivot words are strong features for the classification of sentence attributes; (2) to change the attribute of a sentence, many datasets only requires to change certain pivot words; (3) consequently, many transfer models only perform the lexical-level modification,while leaving higher-level sentence structures unchanged. Our work provides an in-depth understanding of linguistic attribute transfer and further identifies the future requirements and challenges of this task
Existing neural machine translation systems do not explicitly model what has been translated and what has not during the decoding phase. To address this problem, we propose a novel mechanism that separates the source information into two parts: translated Past contents and untranslated Future contents, which are modeled by two additional recurrent layers. The Past and Future contents are fed to both the attention model and the decoder states, which provides Neural Machine Translation (NMT) systems with the knowledge of translated and untranslated contents. Experimental results show that the proposed approach significantly improves the performance in Chinese-English, German-English, and English-German translation tasks. Specifically, the proposed model outperforms the conventional coverage model in terms of both the translation quality and the alignment error rate.
Neural networks with tree-based sentence encoders have shown better results on many downstream tasks. Most of existing tree-based encoders adopt syntactic parsing trees as the explicit structure prior. To study the effectiveness of different tree structures, we replace the parsing trees with trivial trees (i.e., binary balanced tree, left-branching tree and right-branching tree) in the encoders. Though trivial trees contain no syntactic information, those encoders get competitive or even better results on all of the ten downstream tasks we investigated. This surprising result indicates that explicit syntax guidance may not be the main contributor to the superior performances of tree-based neural sentence modeling. Further analysis show that tree modeling gives better results when crucial words are closer to the final representation. Additional experiments give more clues on how to design an effective tree-based encoder. Our code is open-source and available at https://github.com/ExplorerFreda/TreeEnc.
Neural parsers have benefited from automatically labeled data via dependency-context word embeddings. We investigate training character embeddings on a word-based context in a similar way, showing that the simple method improves state-of-the-art neural word segmentation models significantly, beating tri-training baselines for leveraging auto-segmented data.
In typical neural machine translation (NMT), the decoder generates a sentence word by word, packing all linguistic granularities in the same time-scale of RNN. In this paper, we propose a new type of decoder for NMT, which splits the decode state into two parts and updates them in two different time-scales. Specifically, we first predict a chunk time-scale state for phrasal modeling, on top of which multiple word time-scale states are generated. In this way, the target sentence is translated hierarchically from chunks to words, with information in different granularities being leveraged. Experiments show that our proposed model significantly improves the translation performance over the state-of-the-art NMT model.
Greedy transition-based parsers are appealing for their very fast speed, with reasonably high accuracies. In this paper, we build a fast shift-reduce neural constituent parser by using a neural network to make local decisions. One challenge to the parsing speed is the large hidden and output layer sizes caused by the number of constituent labels and branching options. We speed up the parser by using a hierarchical output layer, inspired by the hierarchical log-bilinear neural language model. In standard WSJ experiments, the neural parser achieves an almost 2.4 time speed up (320 sen/sec) compared to a non-hierarchical baseline without significant accuracy loss (89.06 vs 89.13 F-score).
Natural language generation (NLG) is an important component of question answering(QA) systems which has a significant impact on system quality. Most tranditional QA systems based on templates or rules tend to generate rigid and stylised responses without the natural variation of human language. Furthermore, such methods need an amount of work to generate the templates or rules. To address this problem, we propose a Context-Aware LSTM model for NLG. The model is completely driven by data without manual designed templates or rules. In addition, the context information, including the question to be answered, semantic values to be addressed in the response, and the dialogue act type during interaction, are well approached in the neural network model, which enables the model to produce variant and informative responses. The quantitative evaluation and human evaluation show that CA-LSTM obtains state-of-the-art performance.