Haitao Zheng


2024

pdf
LatEval: An Interactive LLMs Evaluation Benchmark with Incomplete Information from Lateral Thinking Puzzles
Shulin Huang | Shirong Ma | Yinghui Li | Mengzuo Huang | Wuhe Zou | Weidong Zhang | Haitao Zheng
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

With the evolution of LLMs, they are endowed with impressive logical reasoning, or vertical thinking capabilities. But can they think out of the box? Do they possess proficient lateral thinking abilities? Following the setup of Lateral Thinking Puzzles, we propose a novel evaluation benchmark, LatEval, which assesses the model’s lateral thinking within an interactive framework. In our benchmark, we challenge LLMs with 2 aspects: (1) posing high-quality questions that break out of conventional norms but are beneficial for puzzle-solving. (2) integrating existing information to gradually deduce the truth through reasoning. We observe that it is hard for most LLMs to accomplish lateral thinking during interactions. Even the most powerful LLM, GPT-4, faces challenges in achieving satisfactory performance, and for most open-source models, simply completing this task is quite difficult. This evaluation benchmark provides LLMs with a highly challenging and differentiating task that is crucial to an effective AI assistant. Our dataset and source codes are available at https://github.com/THUKElab/LatEval.

2023

pdf
Exploring Lottery Prompts for Pre-trained Language Models
Yulin Chen | Ning Ding | Xiaobin Wang | Shengding Hu | Haitao Zheng | Zhiyuan Liu | Pengjun Xie
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Consistently scaling pre-trained language models (PLMs) imposes substantial burdens on model adaptation, necessitating more efficient alternatives to conventional fine-tuning. Given the advantage of prompting in the zero-shot setting and the observed performance fluctuation among different prompts, we explore the instance-level prompt and their generalizability.By searching through the prompt space, we first validate the assumption that for every instance, there is almost always a lottery prompt that induces the correct prediction from the PLM, and such prompt can be obtained at a low cost thanks to the inherent ability of PLMs.Meanwhile, it is shown that some strong lottery prompts have high performance over the whole training set, and they are equipped with distinguishable linguistic features. Lastly, we attempt to generalize the searched strong lottery prompts to unseen data with prompt ensembling method. Experiments are conducted on various types of NLP classification tasks and demonstrate that the proposed method can achieve comparable results with other gradient-free and optimization-free baselines.

pdf
Few-shot Classification with Hypersphere Modeling of Prototypes
Ning Ding | Yulin Chen | Ganqu Cui | Xiaobin Wang | Haitao Zheng | Zhiyuan Liu | Pengjun Xie
Findings of the Association for Computational Linguistics: ACL 2023

Metric-based meta-learning is one of the de facto standards in few-shot learning. It composes of representation learning and metrics calculation designs. Previous works construct class representations in different ways, varying from mean output embedding to covariance and distributions. However, using embeddings in space lacks expressivity and cannot capture class information robustly, while statistical complex modeling poses difficulty to metric designs. In this work, we use tensor fields (“areas”) to model classes from the geometrical perspective for few-shot learning. We present a simple and effective method, dubbed as hypersphere prototypes (HyperProto), where class information is represented by hyperspheres with dynamic sizes with two sets of learnable parameters: the hypersphere’s center and the radius. Extending from points to areas, hyperspheres are much more expressive than embeddings. Moreover, it is more convenient to perform metric-based classification with hypersphere prototypes than statistical modeling, as we only need to calculate the distance from a data point to the surface of the hypersphere. Following this idea, we also develop two variants of prototypes under other measurements. Extensive experiments and analysis on few-shot NLP tasks and comparison with 20+ competitive baselines demonstrate the effectiveness of our approach.

pdf
Fusion or Defusion? Flexible Vision-and-Language Pre-Training
Rongyi Sun | Ziran Li | Yifeng Ding | Qifan Wang | Jingang Wang | Haitao Zheng | Wei Wu | Yunsen Xian
Findings of the Association for Computational Linguistics: ACL 2023

Existing approaches in the vision-and-language pre-training (VLP) paradigm mainly deploy either fusion-based encoders or dual-encoders, failing to achieve both effectiveness and efficiency in downstream multimodal tasks. In this paper, we build a flexible VLP model by incorporating cross-modal fusions into a dual-encoder architecture, where the introduced fusion modules can be easily decoupled from the dual encoder so as to switch the model to a fusion-free one. To better absorb cross-modal features from the fusion modules, we design a cross-modal knowledge transfer strategy along with other comprehensive pre-training tasks to guide the training process, which can further strengthen both the fusion-based and fusion-free representation learning. Extensive experiments conducted on various downstream vision-language tasks show that our proposed model is well-equipped with effectiveness as well as efficiency, demonstrating a superior performance compared with other strong VLP models.

pdf
System Report for CCL23-Eval Task 7: THU KELab (sz) - Exploring Data Augmentation and Denoising for Chinese Grammatical Error Correction
Jingheng Ye | Yinghui Li | Haitao Zheng
Proceedings of the 22nd Chinese National Conference on Computational Linguistics (Volume 3: Evaluations)

“This paper explains our GEC system submitted by THU KELab (sz) in the CCL2023-Eval Task7 CLTC (Chinese Learner Text Correction) Track 1: Multidimensional Chinese Learner TextCorrection. Recent studies have demonstrate GEC performance can be improved by increasingthe amount of training data. However, high-quality public GEC data is much less abundant. To address this issue, we propose two data-driven techniques, data augmentation and data de-noising, to improve the GEC performance. Data augmentation creates pseudo data to enhancegeneralization, while data denoising removes noise from the realistic training data. The resultson the official evaluation dataset YACLC demonstrate the effectiveness of our approach. Finally,our GEC system ranked second in both close and open tasks. All of our datasets and codes areavailabel at https://github.com/THUKElab/CCL2023-CLTC-THU_KELab.”

2022

pdf
Towards Attribute-Entangled Controllable Text Generation: A Pilot Study of Blessing Generation
Shulin Huang | Shirong Ma | Yinghui Li | Li Yangning | Shiyang Lin | Haitao Zheng | Ying Shen
Proceedings of the 2nd Workshop on Natural Language Generation, Evaluation, and Metrics (GEM)

Controllable Text Generation (CTG) has obtained great success due to its fine-grained generation ability obtained by focusing on multiple attributes. However, most existing CTG researches overlook how to utilize the attribute entanglement to enhance the diversity of the controlled generated texts. Facing this dilemma, we focus on a novel CTG scenario, i.e., blessing generation which is challenging because high-quality blessing texts require CTG models to comprehensively consider the entanglement between multiple attributes (e.g., objects and occasions). To promote the research on blessing generation, we present EBleT, a large-scale Entangled Blessing Text dataset containing 293K English sentences annotated with multiple attributes. Furthermore, we propose novel evaluation metrics to measure the quality of the blessing texts generated by the baseline models we designed. Our study opens a new research direction for controllable text generation and enables the development of attribute-entangled CTG models.

pdf
OpenPrompt: An Open-source Framework for Prompt-learning
Ning Ding | Shengding Hu | Weilin Zhao | Yulin Chen | Zhiyuan Liu | Haitao Zheng | Maosong Sun
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics: System Demonstrations

Prompt-learning has become a new paradigm in modern natural language processing, which directly adapts pre-trained language models (PLMs) to cloze-style prediction, autoregressive modeling, or sequence to sequence generation, resulting in promising performances on various tasks. However, no standard implementation framework of prompt-learning is proposed yet, and most existing prompt- learning codebases, often unregulated, only provide limited implementations for specific scenarios. Since there are many details such as templating strategy, initializing strategy, verbalizing strategy, etc., that need to be considered in prompt-learning, practitioners face impediments to quickly adapting the de-sired prompt learning methods to their applications. In this paper, we present Open- Prompt, a unified easy-to-use toolkit to conduct prompt-learning over PLMs. OpenPrompt is a research-friendly framework that is equipped with efficiency, modularity, and extendibility, and its combinability allows the freedom to combine different PLMs, task for- mats, and prompting modules in a unified paradigm. Users could expediently deploy prompt-learning frameworks and evaluate the generalization of them on different NLP tasks without constraints.

pdf
Learning from the Dictionary: Heterogeneous Knowledge Guided Fine-tuning for Chinese Spell Checking
Yinghui Li | Shirong Ma | Qingyu Zhou | Zhongli Li | Li Yangning | Shulin Huang | Ruiyang Liu | Chao Li | Yunbo Cao | Haitao Zheng
Findings of the Association for Computational Linguistics: EMNLP 2022

Chinese Spell Checking (CSC) aims to detect and correct Chinese spelling errors. Recent researches start from the pretrained knowledge of language models and take multimodal information into CSC models to improve the performance. However, they overlook the rich knowledge in the dictionary, the reference book where one can learn how one character should be pronounced, written, and used. In this paper, we propose the LEAD framework, which renders the CSC model to learn heterogeneous knowledge from the dictionary in terms of phonetics, vision, and meaning. LEAD first constructs positive and negative samples according to the knowledge of character phonetics, glyphs, and definitions in the dictionary. Then a unified contrastive learning-based training scheme is employed to refine the representations of the CSC models. Extensive experiments and detailed analyses on the SIGHAN benchmark datasets demonstrate the effectiveness of our proposed methods.

pdf
Linguistic Rules-Based Corpus Generation for Native Chinese Grammatical Error Correction
Shirong Ma | Yinghui Li | Rongyi Sun | Qingyu Zhou | Shulin Huang | Ding Zhang | Li Yangning | Ruiyang Liu | Zhongli Li | Yunbo Cao | Haitao Zheng | Ying Shen
Findings of the Association for Computational Linguistics: EMNLP 2022

Chinese Grammatical Error Correction (CGEC) is both a challenging NLP task and a common application in human daily life. Recently, many data-driven approaches are proposed for the development of CGEC research. However, there are two major limitations in the CGEC field: First, the lack of high-quality annotated training corpora prevents the performance of existing CGEC models from being significantly improved. Second, the grammatical errors in widely used test sets are not made by native Chinese speakers, resulting in a significant gap between the CGEC models and the real application. In this paper, we propose a linguistic rules-based approach to construct large-scale CGEC training corpora with automatically generated grammatical errors. Additionally, we present a challenging CGEC benchmark derived entirely from errors made by native Chinese speakers in real-world scenarios. Extensive experiments and detailed analyses not only demonstrate that the training data constructed by our method effectively improves the performance of CGEC models, but also reflect that our benchmark is an excellent resource for further development of the CGEC field.

pdf
Social-aware Sparse Attention Network for Session-based Social Recommendation
Kai Ouyang | Xianghong Xu | Chen Tang | Wang Chen | Haitao Zheng
Findings of the Association for Computational Linguistics: EMNLP 2022

Session-based Social Recommendation (SSR) aims to use users’ social networks and historical sessions to provide more personalized recommendations for the current session.Unfortunately, existing SSR methods have two limitations.First, they do not screen users’ useless social relationships and noisy irrelevant interactions.However, user preferences are mainly affected by several close friends and key interactions.Second, when modeling the current session, they do not take full advantage of user preference information.To tackle these issues, we propose a novel Social-aware Sparse Attention Network for SSR, abbreviated as SSAN.It mainly consists of the Heterogeneous Graph Embedding (HGE) module and the Social-aware Encoder-decoder Network (SEN) module.In the HGE module, we adopt a modified heterogeneous graph neural network, which focuses more on close friends and key historical interactions, to enhance user/item representations. In the SEN module, we use the user representation as a bridge between the Encoder and Decoder to incorporate user preferences when modeling the current session.Extensive experiments on two benchmark datasets demonstrate the superiority of SSAN over the state-of-the-art models.

pdf
Prompt-learning for Fine-grained Entity Typing
Ning Ding | Yulin Chen | Xu Han | Guangwei Xu | Xiaobin Wang | Pengjun Xie | Haitao Zheng | Zhiyuan Liu | Juanzi Li | Hong-Gee Kim
Findings of the Association for Computational Linguistics: EMNLP 2022

As an effective approach to adapting pre-trained language models (PLMs) for specific tasks, prompt-learning has recently attracted much attention from researchers. By using cloze-style language prompts to stimulate the versatile knowledge of PLMs, prompt-learning can achieve promising results on a series of NLP tasks, such as natural language inference, sentiment classification, and knowledge probing. In this work, we investigate the application of prompt-learning on fine-grained entity typing in fully supervised, few-shot, and zero-shot scenarios. We first develop a simple and effective prompt-learning pipeline by constructing entity-oriented verbalizers and templates and conducting masked language modeling. Further, to tackle the zero-shot regime, we propose a self-supervised strategy that carries out distribution-level optimization in prompt-learning to automatically summarize the information of entity types. Extensive experiments on four fine-grained entity typing benchmarks under fully supervised, few-shot, and zero-shot settings show the effectiveness of the prompt-learning paradigm and further make a powerful alternative to vanilla fine-tuning.

2021

pdf
CLINE: Contrastive Learning with Semantic Negative Examples for Natural Language Understanding
Dong Wang | Ning Ding | Piji Li | Haitao Zheng
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Despite pre-trained language models have proven useful for learning high-quality semantic representations, these models are still vulnerable to simple perturbations. Recent works aimed to improve the robustness of pre-trained models mainly focus on adversarial training from perturbed examples with similar semantics, neglecting the utilization of different or even opposite semantics. Different from the image processing field, the text is discrete and few word substitutions can cause significant semantic changes. To study the impact of semantics caused by small perturbations, we conduct a series of pilot experiments and surprisingly find that adversarial training is useless or even harmful for the model to detect these semantic changes. To address this problem, we propose Contrastive Learning with semantIc Negative Examples (CLINE), which constructs semantic negative examples unsupervised to improve the robustness under semantically adversarial attacking. By comparing with similar and opposite semantic examples, the model can effectively perceive the semantic changes caused by small perturbations. Empirical results show that our approach yields substantial improvements on a range of sentiment analysis, reasoning, and reading comprehension tasks. And CLINE also ensures the compactness within the same semantics and separability across different semantics in sentence-level.

pdf
Few-NERD: A Few-shot Named Entity Recognition Dataset
Ning Ding | Guangwei Xu | Yulin Chen | Xiaobin Wang | Xu Han | Pengjun Xie | Haitao Zheng | Zhiyuan Liu
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Recently, considerable literature has grown up around the theme of few-shot named entity recognition (NER), but little published benchmark data specifically focused on the practical and challenging task. Current approaches collect existing supervised NER datasets and re-organize them to the few-shot setting for empirical study. These strategies conventionally aim to recognize coarse-grained entity types with few examples, while in practice, most unseen entity types are fine-grained. In this paper, we present Few-NERD, a large-scale human-annotated few-shot NER dataset with a hierarchy of 8 coarse-grained and 66 fine-grained entity types. Few-NERD consists of 188,238 sentences from Wikipedia, 4,601,160 words are included and each is annotated as context or a part of the two-level entity type. To the best of our knowledge, this is the first few-shot NER dataset and the largest human-crafted NER dataset. We construct benchmark tasks with different emphases to comprehensively assess the generalization capability of models. Extensive empirical results and analysis show that Few-NERD is challenging and the problem requires further research. The Few-NERD dataset and the baselines will be publicly available to facilitate the research on this problem.

pdf
Wasserstein Selective Transfer Learning for Cross-domain Text Mining
Lingyun Feng | Minghui Qiu | Yaliang Li | Haitao Zheng | Ying Shen
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Transfer learning (TL) seeks to improve the learning of a data-scarce target domain by using information from source domains. However, the source and target domains usually have different data distributions, which may lead to negative transfer. To alleviate this issue, we propose a Wasserstein Selective Transfer Learning (WSTL) method. Specifically, the proposed method considers a reinforced selector to select helpful data for transfer learning. We further use a Wasserstein-based discriminator to maximize the empirical distance between the selected source data and target data. The TL module is then trained to minimize the estimated Wasserstein distance in an adversarial manner and provides domain invariant features for the reinforced selector. We adopt an evaluation metric based on the performance of the TL module as delayed reward and a Wasserstein-based metric as immediate rewards to guide the reinforced selector learning. Compared with the competing TL approaches, the proposed method selects data samples that are closer to the target domain. It also provides better state features and reward signals that lead to better performance with faster convergence. Extensive experiments on three real-world text mining tasks demonstrate the effectiveness of the proposed method.

2020

pdf
Summarize before Aggregate: A Global-to-local Heterogeneous Graph Inference Network for Conversational Emotion Recognition
Dongming Sheng | Dong Wang | Ying Shen | Haitao Zheng | Haozhuang Liu
Proceedings of the 28th International Conference on Computational Linguistics

Conversational Emotion Recognition (CER) is a crucial task in Natural Language Processing (NLP) with wide applications. Prior works in CER generally focus on modeling emotion influences solely with utterance-level features, with little attention paid on phrase-level semantic connection between utterances. Phrases carry sentiments when they are referred to emotional events under certain topics, providing a global semantic connection between utterances throughout the entire conversation. In this work, we propose a two-stage Summarization and Aggregation Graph Inference Network (SumAggGIN), which seamlessly integrates inference for topic-related emotional phrases and local dependency reasoning over neighbouring utterances in a global-to-local fashion. Topic-related emotional phrases, which constitutes the global topic-related emotional connections, are recognized by our proposed heterogeneous Summarization Graph. Local dependencies, which captures short-term emotional effects between neighbouring utterances, are further injected via an Aggregation Graph to distinguish the subtle differences between utterances containing emotional phrases. The two steps of graph inference are tightly-coupled for a comprehensively understanding of emotional fluctuation. Experimental results on three CER benchmark datasets verify the effectiveness of our proposed model, which outperforms the state-of-the-art approaches.

pdf
Integrating User History into Heterogeneous Graph for Dialogue Act Recognition
Dong Wang | Ziran Li | Haitao Zheng | Ying Shen
Proceedings of the 28th International Conference on Computational Linguistics

Dialogue Act Recognition (DAR) is a challenging problem in Natural Language Understanding, which aims to attach Dialogue Act (DA) labels to each utterance in a conversation. However, previous studies cannot fully recognize the specific expressions given by users due to the informality and diversity of natural language expressions. To solve this problem, we propose a Heterogeneous User History (HUH) graph convolution network, which utilizes the user’s historical answers grouped by DA labels as additional clues to recognize the DA label of utterances. To handle the noise caused by introducing the user’s historical answers, we design sets of denoising mechanisms, including a History Selection process, a Similarity Re-weighting process, and an Edge Re-weighting process. We evaluate the proposed method on two benchmark datasets MSDialog and MRDA. The experimental results verify the effectiveness of integrating user’s historical answers, and show that our proposed model outperforms the state-of-the-art methods.

pdf
Answer-driven Deep Question Generation based on Reinforcement Learning
Liuyin Wang | Zihan Xu | Zibo Lin | Haitao Zheng | Ying Shen
Proceedings of the 28th International Conference on Computational Linguistics

Deep question generation (DQG) aims to generate complex questions through reasoning over multiple documents. The task is challenging and underexplored. Existing methods mainly focus on enhancing document representations, with little attention paid to the answer information, which may result in the generated question not matching the answer type and being answerirrelevant. In this paper, we propose an Answer-driven Deep Question Generation (ADDQG) model based on the encoder-decoder framework. The model makes better use of the target answer as a guidance to facilitate question generation. First, we propose an answer-aware initialization module with a gated connection layer which introduces both document and answer information to the decoder, thus helping to guide the choice of answer-focused question words. Then a semantic-rich fusion attention mechanism is designed to support the decoding process, which integrates the answer with the document representations to promote the proper handling of answer information during generation. Moreover, reinforcement learning is applied to integrate both syntactic and semantic metrics as the reward to enhance the training of the ADDQG. Extensive experiments on the HotpotQA dataset show that ADDQG outperforms state-of-the-art models in both automatic and human evaluations.

pdf
Coupling Distant Annotation and Adversarial Training for Cross-Domain Chinese Word Segmentation
Ning Ding | Dingkun Long | Guangwei Xu | Muhua Zhu | Pengjun Xie | Xiaobin Wang | Haitao Zheng
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Fully supervised neural approaches have achieved significant progress in the task of Chinese word segmentation (CWS). Nevertheless, the performance of supervised models always drops gravely if the domain shifts due to the distribution gap across domains and the out of vocabulary (OOV) problem. In order to simultaneously alleviate the issues, this paper intuitively couples distant annotation and adversarial training for cross-domain CWS. 1) We rethink the essence of “Chinese words” and design an automatic distant annotation mechanism, which does not need any supervision or pre-defined dictionaries on the target domain. The method could effectively explore domain-specific words and distantly annotate the raw texts for the target domain. 2) We further develop a sentence-level adversarial training procedure to perform noise reduction and maximum utilization of the source domain information. Experiments on multiple real-world datasets across various domains show the superiority and robustness of our model, significantly outperforming previous state-of-the-arts cross-domain CWS methods.

pdf
The World is Not Binary: Learning to Rank with Grayscale Data for Dialogue Response Selection
Zibo Lin | Deng Cai | Yan Wang | Xiaojiang Liu | Haitao Zheng | Shuming Shi
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Response selection plays a vital role in building retrieval-based conversation systems. Despite that response selection is naturally a learning-to-rank problem, most prior works take a point-wise view and train binary classifiers for this task: each response candidate is labeled either relevant (one) or irrelevant (zero). On the one hand, this formalization can be sub-optimal due to its ignorance of the diversity of response quality. On the other hand, annotating grayscale data for learning-to-rank can be prohibitively expensive and challenging. In this work, we show that grayscale data can be automatically constructed without human effort. Our method employs off-the-shelf response retrieval models and response generation models as automatic grayscale data generators. With the constructed grayscale data, we propose multi-level ranking objectives for training, which can (1) teach a matching model to capture more fine-grained context-response relevance difference and (2) reduce the train-test discrepancy in terms of distractor strength. Our method is simple, effective, and universal. Experiments on three benchmark datasets and four state-of-the-art matching models show that the proposed approach brings significant and consistent performance improvements.

2019

pdf
Chinese Relation Extraction with Multi-Grained Information and External Linguistic Knowledge
Ziran Li | Ning Ding | Zhiyuan Liu | Haitao Zheng | Ying Shen
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Chinese relation extraction is conducted using neural networks with either character-based or word-based inputs, and most existing methods typically suffer from segmentation errors and ambiguity of polysemy. To address the issues, we propose a multi-grained lattice framework (MG lattice) for Chinese relation extraction to take advantage of multi-grained language information and external linguistic knowledge. In this framework, (1) we incorporate word-level information into character sequence inputs so that segmentation errors can be avoided. (2) We also model multiple senses of polysemous words with the help of external linguistic knowledge, so as to alleviate polysemy ambiguity. Experiments on three real-world datasets in distinct domains show consistent and significant superiority and robustness of our model, as compared with other baselines. We will release the source code of this paper in the future.

pdf
Event Detection with Trigger-Aware Lattice Neural Network
Ning Ding | Ziran Li | Zhiyuan Liu | Haitao Zheng | Zibo Lin
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Event detection (ED) aims to locate trigger words in raw text and then classify them into correct event types. In this task, neural net- work based models became mainstream in re- cent years. However, two problems arise when it comes to languages without natural delim- iters, such as Chinese. First, word-based mod- els severely suffer from the problem of word- trigger mismatch, limiting the performance of the methods. In addition, even if trigger words could be accurately located, the ambi- guity of polysemy of triggers could still af- fect the trigger classification stage. To ad- dress the two issues simultaneously, we pro- pose the Trigger-aware Lattice Neural Net- work (TLNN). (1) The framework dynami- cally incorporates word and character informa- tion so that the trigger-word mismatch issue can be avoided. (2) Moreover, for polysemous characters and words, we model all senses of them with the help of an external linguistic knowledge base, so as to alleviate the prob- lem of ambiguous triggers. Experiments on two benchmark datasets show that our model could effectively tackle the two issues and outperforms previous state-of-the-art methods significantly, giving the best results. The source code of this paper can be obtained from https://github.com/thunlp/TLNN.